The objective of present research was to sinter nanosized Mn–Zn ferrites (MZF) at low temperature (≤1,000 °C) by avoiding the formation of nonmagnetic phase (hematite). For this purpose, MZF powder was synthesized by sol–gel auto combustion process at 220 °C and further calcined at 450 °C. In calcined powder, single phase (spinel) was confirmed by X-ray diffraction analysis. Pellets were pressed, having 43% of the theoretical density and showing 47 emu gm−1 saturation magnetization (Ms). Various combinations of heating rate, dwelling time and gaseous environment were employed to meet optimum sintering conditions at low temperature (≤1,000 °C). It was observed that sintering under air or N2 alone had failed to prevent the formation of nonmagnetic (hematite) phase. However, hematite phase can be suppressed by retaining the green compacts at 1,000 °C for 180 min in air then further kept for 120 min in nitrogen. Under these conditions, spinel phase (comprising of nano crystallites), 90% of theoretical density and 102 emu gm−1 of saturation magnetization has been achieved.