Organic–inorganic hybrid composites of epoxy and phenyltrisilanol polyhedral oligomeric silsesquioxane (Ph7Si7O9(OH)3, POSS-triol) were prepared via in situ polymerization of epoxy monomers. The nanocomposites of epoxy with POSS-triol can be prepared in the presence of metal complex latent catalyst, aluminum triacetylacetonate ([Al]) for the reaction between POSS-triol and diglycidyl ether of bisphenol A (DGEBA). The dispersion morphology of organic–inorganic hybrid was characterized by scanning electronic microscopy (SEM). The thermostability of composites was evaluated by thermal gravimetric (TG) analysis. The flammability was evaluated by cone calorimeter test. The presence of [Al] latent catalyst leads to a decrease in combustion rate with respect to epoxy and epoxy/POSS composites as well as reduction in smoke, CO and CO2 production rate. The effect of [Al] is to reduce the size of spherical POSS particles from 3–5 μm in epoxy/POSS to 0.5 μm in epoxy/POSS[Al]. Furthermore, POSS with smaller size may form compact and continue char layer on the surface of composites more efficiently.