Authors:
Wenbin Lou Zhejiang University Department of Environmental Engineering 310027 Hangzhou China

Search for other papers by Wenbin Lou in
Current site
Google Scholar
PubMed
Close
,
Baohong Guan Zhejiang University Department of Environmental Engineering 310027 Hangzhou China

Search for other papers by Baohong Guan in
Current site
Google Scholar
PubMed
Close
, and
Zhongbiao Wu Zhejiang University Department of Environmental Engineering 310027 Hangzhou China

Search for other papers by Zhongbiao Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

To use flue gas desulfurization (FGD) gypsum and limestone as supplement of cement, conduction calorimetry was applied to investigate the early hydration of ternary binder of calcium aluminate cement (CAC), Portland-limestone cement (PLC), and FGD gypsum, supplemented with the determination of setting times and X-ray diffraction (XRD) analysis. Different exothermal profiles were presented in two groups of pastes, in which one group (group A) sets the mass ratio of FGD gypsum/CAC at 0.25 and the other group (group B) sets the mass ratio of PLC/CAC at 0.25. Besides the two common exothermal peaks in cement hydration, a third exothermal peak appears in the pastes with 5–15% FGD gypsum after gypsum is depleted. It is found that not PLC but FGD gypsum plays the key role in such ternary binder where the reaction of ettringite formation dominates the hydration process. PLC accelerates the hydration of ternary binder, which mainly attributes to the nucleating effect of fine limestone particles and PC clinker. The modified hydration process and mechanism in this case is well visualized by the means of calorimetry and it helps us to optimize such design of ternary cementitious material.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2023 2 1 0
May 2023 0 0 0
Jun 2023 8 0 0
Jul 2023 8 0 0
Aug 2023 8 0 0
Sep 2023 7 0 0
Oct 2023 0 0 0