Authors:
Po-Han Lin Department of Chemical Engineering, Texas Tech University, Box 43121, Lubbock, TX 79409, USA

Search for other papers by Po-Han Lin in
Current site
Google Scholar
PubMed
Close
and
Rajesh Khare Department of Chemical Engineering, Texas Tech University, Box 43121, Lubbock, TX 79409, USA

Search for other papers by Rajesh Khare in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

We have used molecular simulations to study the properties of nanocomposites formed by the chemical incorporation of polyhedral oligomeric silsesquioxane (POSS) particles in the cross-linked epoxy network. The particular POSS molecule chosen—glycidyloxypropyl-heptaphenyl POSS—can form only one bond with the cross-linker and thus was present as a dangling unit in the network. Four epoxy-POSS nanocomposites containing different fractions (up to 30 mass/%) of POSS particles were studied in this work. Well-relaxed atomistic model structures of the nanocomposites were created and then molecular dynamics simulations were used to characterize the density, glass transition temperature (Tg), and the coefficient of volume thermal expansion (CVTE) of the systems. In addition to the effect of nanoparticle loading, the effect of nanoparticle chemistry on the nanocomposite properties was also characterized by comparing these results with our previous results (Lin and Khare, Macromolecules 42:4319–4327, 2009) on neat cross-linked epoxy and a nanocomposite containing a POSS nanoparticle that formed eight bonds with the cross-linked network. Our results showed that incorporation of these monofunctional POSS particles into cross-linked epoxy does not cause a measurable change in its density, glass transition temperature, or the CVTE. Furthermore, simulation results were used to characterize the aggregation of POSS particles in the system. The nanofiller particles in systems containing 11, 20, and 30 mass/% POSS were found to form small clusters. The cluster-size distribution of nanoparticles was also characterized for these systems.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 13 0 0
Jul 2024 9 0 0
Aug 2024 13 1 1
Sep 2024 16 0 0
Oct 2024 55 0 0
Nov 2024 6 0 0
Dec 2024 3 0 0