View More View Less
  • 1 Center for Applications in Polymer Science, Department of Chemistry, Central Michigan University, Mt. Pleasant, MI 48859-0001, USA
Restricted access

Abstract  

Organohalogen flame retardants, particularly brominated aromatics, are popular, effective, low cost, and widely used in the plastics industry. However, an increasing concern about persistence in the environment and potential negative health effects of these materials has generated intense interest in the development of alternatives. Ideally, these should have all the positive attributes of the materials that will be replaced. In addition, it is desirable that the new materials be as “green” as possible, e.g., based on renewable resources and be degradable to nontoxic products in the environment. A series of new, non-halogenated flame retardants based on tartaric acid is being developed. Tartaric acid is a by-product of the wine industry and is readily available locally on an annual basis (Michigan is the thirteenth largest producer of wine in the U.S.). It can be readily converted to the corresponding diethyl ester. This ester may serve as the base for the development of a series of new, non-halogenated flame-retarding agents. The presence of the reactive hydroxyl groups allows the introduction of a variety of phosphorus-containing moieties. For example, treatment of diethyl tartrate with diphenylphosphinyl chloride generates diethyl 2,3-di(diphenylphosphinato)-1,4-butanedioate. This material may serve as a monomer for the preparation of various phosphorus-containing polymers and oligomers via step-growth transesterification. The thermal stability of this compound has been assessed by thermogravimetry.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 1 0
May 2021 1 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 1 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0