View More View Less
  • 1 College of Environment & Chemical Engineering, Xi’an Polytechnic University, Xi’an, 710048 China
  • 2 Institute of Modern Separation Science, Northwest University, Xi’an, 710069 China
Restricted access

Abstract  

The displacement adsorption enthalpies (ΔH) of denatured α-Amylase (by 1.8 mol L−1 GuHCl) adsorbed onto a moderately hydrophobic surface (PEG-600, the end-group of polyethylene glycol) from solutions (x mol L−1 (NH4)2SO4, 0.05 mol L−1 KH2PO4, pH 7.0) at 298 K are determined by microcalorimeter. Further, entropies (ΔS), Gibbs free energies (ΔG) and the fractions of ΔH, ΔS, and ΔG for net adsorption of protein and net desorption of water are calculated in combination with adsorption isotherms of α-Amylase based on the stoichiometric displacement theory for adsorption (SDT-A) and its thermodynamics. It is found that the displacement adsorptions of denatured α-Amylase onto PEG-600 surface are exothermic and enthalpy driven processes, and the processes of protein adsorption are accompanied with the hydration by which hydrogen bond form between the adsorbed protein molecules favor formation of β-sheet and β-turn structures. The Fourier transformation infrared spectroscopy (FTIR) analysis shows that the contents of ordered secondary structures of adsorbed α-Amylase increase with surface coverages and salt concentrations increment.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 0 0 0
Nov 2020 0 24 10
Dec 2020 0 0 0
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0