View More View Less
  • 1 School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Engineering Campus, Seberang Perai Selatan, Penang, Malaysia
Restricted access

Abstract

Kaolin-filled polypropylene (PP) composites with various kaolin content, processing temperature and shear histories were compounded using a heated two roll-mill. Prior to thermal analysis, the samples were subjected to extrusion process via capillary rheometer. The influences of kaolin content, processing temperature and shear stress on crystallization of all samples, including isothermal and nonisothermal crystallization behaviour were investigated by differential scanning calorimetry (DSC). The results showed that the increasing kaolin content, processing temperature and shear stress have shifted the crystallization exothermic peak to higher temperature and reduced the overall crystallization time.

  • 1. Razavi-Nouri, M, Ghorbanzadeh-Ahangari, M, Fereidoon, A, Jahanshahi, M 2009 Effect of carbon nanotubes content on crystallization kinetics and morphology of polypropylene. Polym Test 28:4652 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Hou, Z, Wang, K, Zhao, P, Zhang, Q, Yang, C, Chen, D, Du, R, Fu, Q 2008 Structural orientation and tensile behavior in the extrusion-stretched sheets of polypropylene/multi-walled carbon nanotubes’ composite. Polymer 49:35823589 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Tang, J, Wang, Y, Liu, H, Belfiore, LA 2004 Effects of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization. Polymer 45:20812091 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Luyt, AS, Dramićanin, MD, Antić, Ž, Djoković, V 2009 Morphology, mechanical and thermal properties of composites of polypropylene and nanostructured wollastonite filler. Polymer 28:348356.

    • Search Google Scholar
    • Export Citation
  • 5. Esteves, ACC, Barros-Timmons, AM, Martins, JA, Zhang, W, Cruz-Pinto, J, Trindade, T 2005 Crystallization behaviour of new poly(tetramethyleneterephthalamide) nanocomposites containing SiO2 fillers with distinct morphologies. Compos B Eng 36:5159 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Lazzeri, A, Zebarjad, SM, Pracella, M, Cavalier, K, Rosa, R 2005 Filler toughening of plastics. Part 1—the effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites. Polymer 46:827844 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Jain, S, Goossens, H, Duin, MV, Lemstra, P 2005 Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polym 46:88058818.

    • Search Google Scholar
    • Export Citation
  • 8. Xu, W, Liang, G, Zhai, H, Tang, S, Hang, G, Pan, WP 2003 Preparation and crystallization behaviour of PP/PP-g-MAH/Org-MMT nanocomposite. Eur Polym J 39:14671474 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. George, ZP, Achilias, DS, Bikiaris, DN, Karayannidis, GP 2005 Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites. Thermochim Acta 427:117128 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Zhou, Q, Xanthos, M 2009 Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym Degrad Stab 94:327338 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Li, J, Zhou, C, Gang, W 2003 Study on nonisothermal crystallization of maleic anhydride grafted polypropylene/montmorillonite nanocomposite. Polym Test 22:217223 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Sharma, SK, Nayak, SK 2009 Surface modified clay/polypropylene (PP) nanocomposites: Effect on physico-mechanical, thermal and morphological properties. Polym Degrad Stab 94:132138 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Huang, Y, Chen, G, Yao, Z, Li, H, Wu, Y 2005 Non-isothermal crystallization behavior of polypropylene with nucleating agents and nano-calcium carbonate. Eur Polym J 41:27532760 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Sun, T, Chen, F, Dong, X, Zhou, Y, Wang, D, Han, CC 2009 Shear-induced orientation in the crystallization of an isotactic polypropylene nanocomposite. Polymer 50:24652471 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Titan Petchem (M) SDN BHD. Product data: TitanPro SM240 for injection moulding. http://www.titangroup.com/Products/PDS/TitanPro/English/SM240.pdf (2009). Accessed 20 Feb 2010.

    • Search Google Scholar
    • Export Citation
  • 16. Gradys, A, Sajkiewicz, P, Minakov, AA, Adamovsky, S, Schick, C, Hashimoto, T, Saijo, K 2005 Crystallization of polypropylene at various cooling rates. Mater Sci Eng A 413–414:442446.

    • Search Google Scholar
    • Export Citation
  • 17. Song, S, Wu, P, Feng, J, Ye, M, Yang, Y 2009 Influence of pre-shearing on the crystallization of an impact-resistant polypropylene copolymer. Polymer 50:286295 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Yuan, Q, Awate, S, Misra, RDK 2006 Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. Eur Polym J 42:19942003 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Avella, M, Cosco, S, Di Lorenzo, ML, Di Pace, E, Errico, ME, Gentile, G 2006 Nucleation activity of nanosized CaCO3 on crystallization of isotactic polypropylene, in dependence on crystal modification, particle shape, and coating. Eur Polym J 42:15481557 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Coccorullo, I, Pantani, R, Titomanlio, G 2003 Crystallization kinetics and solidified structure in iPP under high cooling rates. Polymer 44:307318 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Maio, ED, Iannace, S, Sorrentino, L, Nicolais, L 2004 Isothermal crystallization in PCL/clay nanocomposites investigated with thermal and rheometric methods. Polymer 45:88938900 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)