Authors:
N. Zouaoui Laboratoire Gestion des Risques et Environnement, Université de Haute Alsace, 25 Rue de Chemnitz, 68200, Mulhouse, France
Laboratoire Génie des Procédés Chimiques, Université Ferhat Abbas, Sétif, Algeria

Search for other papers by N. Zouaoui in
Current site
Google Scholar
PubMed
Close
,
J. F. Brilhac Laboratoire Gestion des Risques et Environnement, Université de Haute Alsace, 25 Rue de Chemnitz, 68200, Mulhouse, France

Search for other papers by J. F. Brilhac in
Current site
Google Scholar
PubMed
Close
,
F. Mechati Laboratoire Gestion des Risques et Environnement, Université de Haute Alsace, 25 Rue de Chemnitz, 68200, Mulhouse, France

Search for other papers by F. Mechati in
Current site
Google Scholar
PubMed
Close
,
M. Jeguirim Laboratoire Gestion des Risques et Environnement, Université de Haute Alsace, 25 Rue de Chemnitz, 68200, Mulhouse, France

Search for other papers by M. Jeguirim in
Current site
Google Scholar
PubMed
Close
,
B. Djellouli Laboratoire Génie des Procédés Chimiques, Université Ferhat Abbas, Sétif, Algeria

Search for other papers by B. Djellouli in
Current site
Google Scholar
PubMed
Close
, and
P. Gilot Laboratoire Gestion des Risques et Environnement, Université de Haute Alsace, 25 Rue de Chemnitz, 68200, Mulhouse, France

Search for other papers by P. Gilot in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Combustion of carbon black (CB) in the crucible of a thermobalance is controlled by both carbon reactivity and oxygen transport from the oxidizing flux to the surface of the bed and within the porous bed. The kinetic constant of combustion has been determined using a fixed-bed reactor in which CB combustion is mainly under kinetic control. Then, modelling of oxygen transport in the thermobalance allowed determining the oxygen diffusivity within the CB pile. Fickian diffusion is a good approximate value of the diffusion coefficient for modelling of internal oxygen transport. The effects of the initial sample mass and of the sample containment on the initial combustion rate have been investigated. The effectiveness factor of the bed was calculated for different experimental conditions. Advices to correctly extract a kinetic constant from thermogravimetric experiments are given. According to the required precision, an experimental procedure is proposed. Limitations to oxygen transport within the bed may be ignored. They can be minimized by the use of an inert material to remove the stagnant atmosphere between the surface of the bed and the mouth of the crucible. It appears mandatory to account for oxygen transport limitations within the CB pile. It can be assumed that the sample temperature (not known) during reaction is the regulation temperature. Thermal effects are also minimized by use of the inert material. A 30–50 mg sample mass seems to be optimal for determination of the kinetic parameters.

  • 1. Šestak, J, Berggren, G 1971 Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta 3:112 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Šatava, V 1973 Fundamental principles of kinetic data evaluation from thermal analysis curves. J Thermal Anal 5:217226 .

  • 3. Ceipidor, UB, Bucci, R, Magri, AD 1990 Using thermoanalytical data. Part 2. The dependence of kinetic data available from thermogravimetry on sample and instrument parameters: a method for calculating ‘true’ kinetic parameters. Thermochim Acta 161:3749 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Kalogirou, M, Samaras, Z 2009 Soot oxidation kinetics from TG experiments. J Thermal Anal Calorim 98:215224 .

  • 5. Kalogirou, M, Samaras, Z 2010 Soot oxidation kinetics from TG experiments, Can they be used reliably in diesel particulate filter modelling tools?. J Thermal Anal Calorim 99:10051010 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Czarnecki, J, Šestak, J 2000 Practical thermogravimetry. J Thermal Anal Calorim 60:759778 .

  • 7. Ollero, P, Serrera, A, Arjona, R, Alcantarilla, S 2002 Diffusional effects in TGA gasification experiments for kinetic determination. Fuel 81:19892000 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Gómez-Barea, A, Ollero, P, Arjona, R 2005 Reaction-diffusion model of TGA gasification experiments for estimating diffusional effects. Fuel 84:16951704.

    • Search Google Scholar
    • Export Citation
  • 9. Marcuccilli F , Gilot P, Stanmore B, Prado G. Experimental and theoretical study of diesel soot reactivity. Twenty-Fifth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh; 1994. pp. 61926.

    • Search Google Scholar
    • Export Citation
  • 10. Stanmore, BR, Gilot, P 1995 The influence of sample containment on the thermogravimetric measurement of carbon black reactivity. Thermochim Acta 261:151164 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Gilot, P, Brillard, A, Stanmore, BR 1995 Geometric effects on mass transfer during thermogravimetric analysis: application to reactivity of diesel soot. Combust Flame 102:471480 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Ishiguro, T, Suzuki, N, Fujitani, Y, Morimoto, H 1991 Microstructural changes of diesel soot during oxidation. Combust Flame 85:16 .

  • 13. Neeft, JPA, Nijhuis, TX, Smakman, E, Makkee, M, Moulijn, J 1997 Kinetics of the oxidation of diesel soot. Fuel 67:11291136 .

  • 14. Yezerets, A, Currier, NW, Kim, DH, Eadler, HA, Epling, WS, Peden, CHF 2005 Differential kinetic analysis of diesel particulate matter (soot) oxidation by oxygen using a step–response technique. Appl Catal B 61:120129 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. PL Walker Jr Taylor, RL, Ranish, JM 1991 An update on the carbon–oxygen reaction. Carbon 29:411421 .

  • 16. Nguyen Huu Nhon, Y, Mohamed Magan, H, Petit, C 2004 Catalytic diesel particulate filter: evaluation of parameters for laboratory studies. Appl Catal B 49:127133 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Jung, H, Kittelson, DB, Zachariah, MR 2004 Kinetics and visualization of soot oxidation using transmission electron microscopy. Combust Flame 136:445456 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Schweich D . Proc. Ecole d'été “Transfert en milieu poreux”, vol. 2, Carcans-Maubuisson; 1985.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2023 3 0 0
Oct 2023 5 0 1
Nov 2023 4 9 1
Dec 2023 36 0 1
Jan 2024 32 3 1
Feb 2024 7 0 1
Mar 2024 0 0 0