View More View Less
  • 1 Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Università degli Studi di Trento, Mesiano, Trento 38050, Italy
  • | 2 Dipartimento di Fisica, Università degli Studi di Trento, Povo, Trento 38050, Italy
Restricted access

Abstract

This study deals with some microstructural and crystallographic aspects of the thermally induced transformation of goethite (α-FeOOH) into hematite (α-Fe2O3), occurring at about 300 °C. Powder specimens of goethite have been annealed in air at different temperatures, ranging from 200 °C up to 1,000 °C. The resulting products have been analyzed for a complete characterization of the changes brought about by the thermal treatments, using a multianalytical approach, based on: thermogravimetry, differential thermal analysis, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. At lower temperatures, the transition to hematite produces no important changes in size and shape of the original goethite grains. Recrystallization, and partial sintering, occurs only at temperatures in excess of 800 °C. The relevant evolution of pores present in both phases has been also considered, as it may provide important indications on the actual formation mechanism of hematite.

  • 1. Trassati, S 1994 Transition metal oxides: versatile materials for electrocatalysis J Lipkowski P Ross eds. Electrochemistry of novel materials III VCH Verlagsgesellschaft Weinheim, Germany 207.

    • Search Google Scholar
    • Export Citation
  • 2. Busca, G, Daturi, M, Finocchio, E, Lorenzelli, V, Ramis, G, Willey, RJ 1997 Transition metal mixed oxides as combustion catalysts: preparation, characterization and activity mechanisms. Catal Today 33:239249 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Cornell, RM, Schwertmann, U 1996 The iron oxides VCH Verlagsgesellschaft Weinheim, Germany.

  • 4. Marean, CW, Bar-Matthews, M, Bernatchez, J, Fisher, E, Goldberg, P, Herries, AIR, Jacobs, Z, Jerardino, A, Karkanas, P, Minichillo, T, Nilssen, PJ, Thompson, E, Watts, I, Williams, HM 2008 Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449:905908 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Colombo, L 2003 Il colore degli antichi 2 Nardini Florence.

  • 6. Ruan, HD, Frost, RL, Kloprogge, JT, Duong, L 2002 Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite. Spectrochim Acta A 58:967981 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Ruan, HD, Frost, RL, Kloprogge, JT, Duong, L 2002 Infrared spectroscopy of goethite dehydroxylation. II. Effect of aluminium substitution on the behaviour of hydroxyl units. Spectrochim Acta A 58:479491 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Lutterotti, L, Matthies, S, Wenk, HR, Goodwin, M 1997 Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys 81:594600 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Lonardelli, I, Wenk, HR, Lutterotti, L, Goodwin, M 2005 Texture analysis from synchrotron diffraction images with the Rietveld method: dinosaur tendon and salmon scale. J Synchrotron Radiat 12:354360 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Labar, JL Consistent indexing of a (set of) single crystal SAED pattern(s) with the process diffraction program. Ultramicroscopy 2005 103:237249 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Ruan, HD, Frost, RL, Kloprogge, JT 2001 The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite. Spectrochim Acta A 57:25752586 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Gualtieri, AF, Venturelli, P 1999 In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction. Am Mineral 84:895904.

    • Search Google Scholar
    • Export Citation
  • 13. Hongley, F, Song, B, Li, Q 2006 Thermal behavior of goethite during transformation to hematite. Mater Chem Phys 98:148153 .

  • 14. Walter, D, Buxbaum, D, Laqua, W 2001 The mechanism of the thermal transformation from goethite to hematite. J Therm Anal Calorim 63:733748 .

  • 15. Saito, T The anomalous thermal expansion of hematite at a high temperature. Bull Chem Soc Jpn 1965 38:20082009 .

  • 16. Ocaña, M, Morales, MP, Serna, CJ 1995 The growth mechanism of α-Fe2O3 ellipsoidal particles in solution. J Colloid Interface Sci 171:8591 .

  • 17. Bersani, D, Lottici, P, Montenero, A 1999 Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses. J Raman Spectrosc 30:355360 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Gouadec, G, Colomban, P 2007 Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Charact Mater 53:156 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Housecroft, C, Sharpe, AG 2007 Inorganic chemistry Prentice Hall Harlow.

  • 20. Massey, MJ, Baier, U, Merlin, R, Weber, WH 1990 Effects of pressure and isotopic-substitution on the Raman-spectrum of alpha-Fe2O3—identification of 2-magnon scattering. Phys Rev B 41:78227827 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Pelino, M, Toro, L, Petroni, M, Florindi, A, Cantalini, C 1989 Study of the kinetics of decomposition of goethite in vacuo and pore structure of product particles. J Mater Sci 24:409412 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Rendon, JL, Cornejo, J P De Arambarri Serna, J Grinding-induced effects on goethite (α-FeOOH). J Colloid Interface Sci 1983 92:508516 .

  • 23. DLA de Faria Lopes, FN Heated goethite and natural hematite: can Raman spectroscopy be used to differentiate them?. Vib Spectrosc 2007 45:117121 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Frost, RL, Ding, Z, Ruan, HD 2003 Thermal analysis of goethite. Relevance to Australian indigenous art. J Therm Anal Calorim 71:783797 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 10 3 0
May 2021 12 0 0
Jun 2021 9 1 3
Jul 2021 16 1 0
Aug 2021 13 1 1
Sep 2021 12 1 2
Oct 2021 0 0 0