Authors:
A. P. Surzhikov Tomsk Polytechnic University, pr. Lenina, 30, Tomsk, Russia, 634050

Search for other papers by A. P. Surzhikov in
Current site
Google Scholar
PubMed
Close
,
T. S. Frangulyan Tomsk Polytechnic University, pr. Lenina, 30, Tomsk, Russia, 634050

Search for other papers by T. S. Frangulyan in
Current site
Google Scholar
PubMed
Close
,
S. A. Ghyngazov Tomsk Polytechnic University, pr. Lenina, 30, Tomsk, Russia, 634050

Search for other papers by S. A. Ghyngazov in
Current site
Google Scholar
PubMed
Close
, and
E. N. Lysenko Tomsk Polytechnic University, pr. Lenina, 30, Tomsk, Russia, 634050

Search for other papers by E. N. Lysenko in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using non-isothermal thermogravimetry (TG), the oxidation kinetics of oxygen-deficient lithium–titanium ferrospinel, Li0.649Fe1.598Ti0.5Zn0.2Mn0.051O4−δ, manufactured by ceramic engineering is investigated. The oxidation annealing of powder samples is performed in air. According to the X-ray phase analysis, the processes giving rise to variations in oxygen content occur within single-phase spinel structure. The experimental kinetic results are processed using the Netzsch Thermokinetics software. The oxidation rate constants and the effective coefficients of atmospheric oxygen diffusion into the ferrites are determined. The effective activation energy E of oxygen diffusion is found to be 1.95 eV. It is demonstrated that an increase in the oxygen non-stoichiometry parameter δ as a result of recovery annealing of ferrite powders in vacuum at T = 1,070 K for 2 h gives rise to a slight decrease in E down to 1.89 eV. The activation energy of oxygen grain-boundary diffusion is identified by the electroconduction method. The resulting value 1.93 eV is fairly consistent with that obtained by TG.

  • 1. Levin BE , Tret'yakov YD, Letyuk LM. Physicochemical principles of preparation, properties, and applications of ferrites. Moscow: Metallurgiya; 1979 (in Russian).

    • Search Google Scholar
    • Export Citation
  • 2. Valenzuela, R 1994 Magnetic ceramics Cambridge University Press Cambridge .

  • 3. West, AR 1988 Basic solid state chemistry Wiley New York.

  • 4. Viswanathan, B, Murthy, VRK 1990 Ferrite materials science and technology Narosa Publishing House New Delhi.

  • 5. Gundlach, EM, Gallagher, PK 1998 Thermogravimetric determination of the oxygen non-stoichiometry in Ni0.563Zn0.188Fe2.25O4+γ and Ni0.375Zn0.375Fe2.25O4+γ. Thermochim Acta 318:1520 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Surzhikov, AP, Pritulov, AM, Ghyngazov, SA, Lysenko, EN 1999 Investigation of oxygen diffusion in Li-Ti ferrites. Perspektivniye Materialy 6:90.

    • Search Google Scholar
    • Export Citation
  • 7. Surzhikov, AP, Lysenko, EN, Ghyngazov, SA, Frangulyan, TS 2002 Determination of the oxygen diffusion coefficient in polycrystalline Li-Ti ferrites. Rus Phys J 45:989 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Sanders, JP, Gallagher, PK 2003 Kinetics of the oxidation of magnetite using simultaneous TG/DSC. J Therm Anal Calorim 72:77789 .

  • 9. Vourlias, G, Pistofidis, N, Pavlidou, E, Chrissafis, K 2009 Oxidation behaviour of precipitation hardened steel TG, X-Ray, XRD and SEM study. J Therm Anal Calorim 95:638 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Kalogirou, M, Samaras, Z 2010 Soot oxidation kinetics from TG experiments. J Therm Anal Calorim 99:100510 .

  • 11. Amankwah, RK, Pickles, CA 2009 Thermodynamic, thermogravimetric and permittivity studies of hausmannite (Mn3O4) in air. J Therm Anal Calorim 98:84953 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Ridgley, DH, Lessoff, H, Childress, JD 1970 Effects of lithium and oxygen losses on magnetic and crystallographic properties of spinel lithium ferrite. J Am Ceram Soc 53:30411 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Opffermann, J 2000 Kinetic analysis using multivariate non-linear regression. J Therm Anal Calorim 60:64158 .

  • 14. Mianowski, A, Marecka, A 2009 The isokinetic effect as related to the activation energy for the gases diffusion in coal at ambient temperatures. Part I. Fick's diffusion parameter estimated from kinetic curves. J Therm Anal Calorim 95:28592 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Zhuravlev, GI, Golubkov, LA, Strazova, TA 1990 Main types of ferrite microstructure and their formation. Poroshkovaya Metallurgiya 6:68.

    • Search Google Scholar
    • Export Citation
  • 16. Surzhikov, AP, Peshev, VV, Pritulov, AM, Ghyngazov, SA 1999 Grain-boundary oxygen diffusion in polycrystalline ferrites. Rus Phys J 42:490 .

  • 17. Patent RU 2169914, G01N13/00; 1999.

  • 18. Fisher, JC Calculation of diffusion penetration curves for surface and grain boundary diffusion. J Appl Phys 1951 22:747 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2024 5 0 0
Jun 2024 11 0 0
Jul 2024 40 0 0
Aug 2024 18 0 0
Sep 2024 26 0 0
Oct 2024 131 0 0
Nov 2024 14 0 0