View More View Less
  • 1 Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc) (CSIC), C/ Serrano Galvache, 4, 28033, Madrid, Spain
  • | 2 Nanostructured and Eco-Efficient Materials for Construction Unit, Associated Unit LABEIN-Tecnalia/CSIC.IETcc, Madrid, Spain
  • | 3 Centre for Nanomaterials Application in Construction (NANOC), LABEIN-Tecnalia, Parque Tecnológico de Bizkaia, C/ Geldo, 48160, Derio, Bilbao, Spain
  • | 4 Grupo CTG Italcementi, Via G. Camozzi, 124, 24121, Bergamo, Italy
Restricted access

Abstract

This research is part of a European project (namely, CODICE project), main objective of which is modelling, at a multi-scale, the evolution of the mechanical performance of non-degraded and degraded cementitious matrices. For that, a series of experiments were planned with pure synthetic tri-calcium silicate (C3S) and bi-calcium silicate (C2S) (main components of the Portland cement clinker) to obtain different calcium–silicate–hydrate (C–S–H) gel structures during their hydration. The characterization of those C–S–H gels and matrices will provide experimental parameters for the validation of the multi-scale modelling scheme proposed. In this article, a quantitative method, based on thermal analyses, has been used for the determination of the chemical composition of the C–S–H gel together with the degree of hydration and quantitative evolution of all the components of the pastes. Besides, the microstructure and type of silicate tetrahedron and mean chain length (MCL) were studied by scanning electron microscopy (SEM) and 29Si magic-angle-spinning (MAS) NMR, respectively. The main results showed that the chemical compositions for the C–S–H gels have a CaO/SiO2 M ratio almost constant of 1.7 for both C3S and C2S compounds. Small differences were found in the gel water content: the H2O/SiO2 M ratio ranged from 2.9 ± 0.2 to 2.6 ± 0.2 for the C3S (decrease) and from 2.4 ± 0.2 to 3.2 ± 0.2 for the C2S (increase). The MCL values of the C–S–H gels, determined from 29Si MAS NMR, were 3.5 and 4 silicate tetrahedron, for the hydrated C3S and C2S, respectively, remaining almost constant at all hydration periods.

  • 1. Taylor HFW . Cement chemistry. London: Academic Press; 2nd ed. Telford Publishing, 1997.

  • 2. Taylor, HFW, Turner, AB 1987 Reactions of tricalcium silicate paste with organic liquids. Cem Concr Res 17:613623 .

  • 3. Fujii, K, Kondo, W 1974 Kinetics of the hydration of tricalcium silicate. J Am Ceram Soc 57 11 492497 .

  • 4. Daimon, M, Ueda, S, Kondo, R 1971 Morphological study on hydration of tricalcium silicate. Cem Concr Res 1:391401 .

  • 5. JGM de Jong Stein, HN, Stevels, JM 1967 Hydration of tricalcium silicate. J Appl Chem 17:246250 .

  • 6. Bishnoi S , Scrivener KL. Studying nucleation and growth kinetics of alite hydration using μic. Cem Concr Res. 2009. doi: .

  • 7. Bishnoi, S, Scrivener, KL 2009 μic: a new platform for modelling the hydration of cements. Cem Concr Res 39:266274 .

  • 8. Bishnoi S . Vector modelling of hydrating cement microstructure and kinetics. Thèse no 4093. École Polytechnique Fédérale de Lausanne; 2008.

    • Search Google Scholar
    • Export Citation
  • 9. Costoya Fernandez MM . Effect of particle size on the hydration kinetics and microstructural development of tricalcium silicate. Thèse n° 4102. École Polytechnique Fédérale de Lausanne; 2008.

    • Search Google Scholar
    • Export Citation
  • 10. Goñi, S, Guerrero, A 2010 Study of alkaline hydrothermal activation of belite cements by thermal analysis. J Therm Anal Calorim 99 2 471477 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Taylor, HFW 1986 Proposed structure for calcium silicate hydrate gel. J Am Ceram Soc 69 6 464467 .

  • 12. Powers TC , Brownyard TL. Studies of the physical properties of hardened Portland cement paste. Skokie, IL: Portland Cement Association R&D Bull. 22. Reprinted from J Am Concr Inst. 1946;18(2):101-32 and 1948;8(5):549-602.

    • Search Google Scholar
    • Export Citation
  • 13. Powers TC . Physical properties of cement paste. Proceedings of the Fourth International Symposium on Chemistry of Cement, Washington, USA; 1960. p. 577613.

    • Search Google Scholar
    • Export Citation
  • 14. Feldman, RF, Sereda, PJ 1968 A model for hydrated Portland cement paste as deduced from sorption length change and mechanical properties. Mater Struct 1 6 509520.

    • Search Google Scholar
    • Export Citation
  • 15. Feldman, RF, Sereda, PJ 1970 A new model for hydrated Portland cement and its practical implications. Eng J Can 53 8/9 5359.

  • 16. Richardson, IG 2004 Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C–S–H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem Concr Res 34:17331777 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Jennings, HM 2000 A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res 30:101116 .

  • 18. Tennis, PD, Jennings, HM 2000 A model for two types of C–S–H in the microstructure of Portland cement pastes. Cem Concr Res 30:855863 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Constantinides, G, Ulm, F-J 2004 The effect of two types of C–S–H on the elasticity of cement based materials: results from nanoindentation and micromechanical modelling. Cem Concr Res 34:6780 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Thomas, JJ, Jennings, HM 2006 A colloidal interpretation of chemical aging of the C–S–H gel and its effects on the properties of cement paste. Cem Concr Res 36:3038 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Allen, AJ, Thomas, JJ, Jennings, HM 2007 Composition and density of nanoscale calcium–silicate–hydrate in cement. Nat Mater 6:311316 .

  • 22. Constantinides, G, Ulm, F-J 2007 The nanogranular nature of C–S–H. J Mech Phys Solids 55:6490 .

  • 23. Jennings, HM 2008 Refinements to colloid model of C–S–H in cement: CM-II. Cem Concr Res 38:275289 .

  • 24. Dolado, JS, Griebel, M, Hamaekers, J 2007 A molecular dynamic study of cementitious calcium silicate hydrate (C–S–H) gels. J Am Ceram Soc 90 12 39383942.

    • Search Google Scholar
    • Export Citation
  • 25. Manzano, H, Dolado, JS, Griebel, M, Hamaekers, J 2008 A molecular dynamics study of the aluminosilicate chains structure in Al-rich calcium silicate hydrated (C–S–H) gels. Phys Status Solidi A 205 6 13241329 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Vandamme M , Ulm F-J, Fonollosa P. Nanogranular packing of C-S-H at substochiometric conditions. Cem Concr Res. http://dx.doi.org/10.1016/j.cemconres.2009.09.017.

    • Search Google Scholar
    • Export Citation
  • 27. Pellenq RJM , Kushim A, Shahsavari R, Van Vliet KJ, Buehler MJ, Yip S, Ulm F-J. A realistic molecular model of cement hydrates. www.pnas.org_cgi_doi_10.1073_pnas.0902180106.

    • Search Google Scholar
    • Export Citation
  • 28. COmputationally Driven design of Innovative CEment-based materials (CODICE) project—contract NMP3-SL-2008-214030. www.codice-project.eu.

  • 29. Cherem da Cunha, L, Gonzalves, JP, Büchler, PM, Dweck, J 2008 Effect of metakaolin pozzolanic activity in the early stages of cement type ii paste and mortar hydration. J Therm Anal Calorim 92:115119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Pacewska B , Wiliñska I, Bukowska M. Calorimetric investigations of the influence of waste aluminosilicate on the hydration of different cements. J Therm Anal Calorim. 2009. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Vessalas K , Thomas PS, Ray AS, Guerbois J-P, Joyce P, Haggman J. Pozzolanic reactivity of the supplementary cementitious material pitchstone fines by thermogravimetric analysis. J Therm Anal Calorim. 2009. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Fernández-Jiménez, A, Puertas, F, Arteaga, A 1998 Determination of kinetic equations of alkaline activation of blast furnace slag by means of calorimetric data. J Therm Anal Calorim 52:945955 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Pressler, EE, Brunauer, S, Kantro, DL 1956 Investigation of the Franke method of determining free calcium hydroxide and free calcium oxide. Anal Chem 28 5 896902 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Skibsted, J, Hjorth, J, Jakobsen, HJ 1990 Correlation between 29Si NMR chemical shifts and mean Si–O bond lengths for calcium silicates. Chem Phys Lett 172 3–4 279283 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Kirkpatrick, RJ, Cong, X 1994 An introduction to 27Al and 29Si NMR spectroscopy of cements and concretes P Colombet A Grimmer eds. Application of NMR spectroscopy to cement science Gordon & Breach Amsterdam 5576.

    • Search Google Scholar
    • Export Citation
  • 36. García-Lodeiro I . Compatibilidad de geles cementantes C-S-H y N-A-S-H. Estudios en muestras reales y en polvos sintéticos. Tesis Doctoral. Universidad Autónoma de Madrid; 2008.

    • Search Google Scholar
    • Export Citation
  • 37. Richardson, IG 1999 The nature of C–S–H in hardened cements. Cem Concr Res 29:11311147 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)