View More View Less
  • 1 Laboratoire de Thermodynamique Métallurgique et Rhéologie des Matériaux, Université Ibn Zohr, Dcheira, B.P. 496, Agadir, Morocco
  • | 2 Laboratoire de Physicochimie de l’Etat Solide, ICMMO, Université de Paris-Sud, 91405, Orsay Cedex, France
Restricted access

Abstract

The thermodynamic optimization of the Yb–Sn binary system was carried out with the help of the CALPHAD (CALculation of PHAse Diagram) method. Yb2Sn, α-βYb5Sn3, Yb5Sn4, YbSn, Yb3Sn5, and YbSn3 have been treated as stoichiometric compounds, while a sublattice model has been used for the description of the liquid, BCC, BCT, and FCC phases. The calculations based on the thermodynamic modeling are in good agreement with the phase diagram data and experimental thermodynamic values.

  • 1. Idbenali, M, Servant, C, Selhaoui, N, Bouirden, L. A thermodynamic reassessment of the La_Sn system. Calphad 2009 33:398404 .

  • 2. Kaufman, L, Bernstein, H Computer calculations of phase diagrams 1970 Academic Press New York, NY.

  • 3. Palenzona, A, Cirafici, S. The Sn–Yb (Tin–Ytterbium) system. J Phase Equilib 1991 12:482485 .

  • 4. Palenzona, A, Cirafici, S. The ytterbium–tin system. J Less Common Met 1976 46:321326 .

  • 5. Manfrinetti, P, Mazzone, D, Palenzona, A. An up-dating of the Yb–Sn phase diagram. J Alloys Compd 1999 284:L1L3 .

  • 6. Leon-Escamilla, EA, Corbett, JD. Solid state compounds with tin–tin bonding. Yb36Sn23: a novel compound containing oligomeric tin anions. Inorg Chem 1999 38:738743 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Alejandro, A, Leon-Escamilla, EA, Corbett, JD. Hydrogen impurity effects. A5Tt3Z intermetallic compounds between A = Ca, Sr, Ba, Eu, Yb and Tt = Sn, Pb with Cr5B3-like structures that are stabilized by hydride or fluoride (Z). Inorg Chem 2001 40:12261233 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Palenzona, A. Dynamic differential calorimetry of intermetallic compounds I. Heat of formation, heat and entropy of fusion of rare earth–tin compounds. Thermochim Acta. 1973;5:473480 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Chatillon-Colinet, C, Percheron, A, Mathieu, J-C, Achard, J-C. Calorimetric measurements of the heat of solution of ytterbium in tin. determination of the heat of formation of YbSn3 phase. Compte Rend C 1970 270:473476.

    • Search Google Scholar
    • Export Citation
  • 10. Witusiewicz, VT, Sidorko, VR, Bulanova, MV. Assessment of thermodynamic functions of formation for rare earth silicides, germanides, stannides and plumbides. J Alloys Compd 1997 248:233245 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Dinsdale, AT. SGTE data for pure elements. Calphad. 1991;15:317425 .

  • 12. Redlich, O, Kister, A. Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem 1948 40:345348 .

  • 13. Sundman, B, Jansson, B, Andersson, JO. The Thermo-Calc databank system. Calphad 1985 9:153190 .

  • 14. Jansson B . Evaluation of parameters in thermodynamic models using different types of experimental data simultaneously. Thesis, Stockholm: Royal Institute of Technology; 1984.

    • Search Google Scholar
    • Export Citation
  • 15. Arroyave, R, Liu, ZK. Thermodynamic modelling of the Zn–Zr system. Calphad 2006 30:113 .

  • 16. Kumar, KC, Wollants, P. Some guidelines for thermodynamic optimisation of phase diagrams. J Alloys Compd 2001 320:189198 .

  • 17. Chen, SL, Daniel, S, Zhang, F, Chang, YA, Oates, WA, Schmid-Fetzer, R. On the calculation of multicomponent stable phase diagrams. J Phase Equilib 2001 22:373378 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Stein, F, Palm, M, Sauthoff, G. Structure and stability of Laves phases part II—structure type variations in binary and ternary system. Intermetallics 2005 13:10561074 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 1 0 0
Aug 2021 3 0 0
Sep 2021 0 0 0
Oct 2021 1 0 0
Nov 2021 1 0 0
Dec 2021 1 0 0