View More View Less
  • 1 AEWC Advanced Structures & Composites Center, University of Maine, Orono, ME, 04469, USA
  • | 2 Department of Forest Industry Engineering, Faculty of Forestry, University of Bartin, 74100, Bartin, Turkey
Restricted access

Abstract

Polymer composite materials were prepared from poly(ethylene terephthalate)–poly(trimethylene terephthalate) blends as the matrix and different microcrystalline cellulose (MCC) filler levels (0–40 wt%) using melt compounding followed by compression molding. The composites were analyzed using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The DSC results indicated that there is no consistent or significant influence of the MCC addition on the glass transition (Tg), melting (Tm), and crystallization temperature of the composites. With increasing MCC content, dynamic mechanical properties improved because of the reinforcing effect of the MCC. The tan δ peak values from the DMTA were not significantly changed as the MCC content increased. TG indicated that the onset temperature of rapid thermal degradation decreased with increasing MCC content. It was also found that the thermal stability of the composites slightly decreased as the MCC content increased.

  • 1. Helbert, W, Cavaillé, JY, Dufresne, A 1996 Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17 4 604611 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Azizi Samir, MAS, Alloin, F, Dufresne, A 2005 Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6 2 612626 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Petersson, L, Kvien, I, Oksman, K 2007 Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67 11–12 25352544 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Panaitescu, DM, Notingher, PV, Ghiurea, M, Ciuprina, F, Paven, H, Iorga, M, Florea, D 2007 Properties of composite materials from polyethylene and cellulose microfibrils. J Optoelectron Adv Mater 9 8 25242528.

    • Search Google Scholar
    • Export Citation
  • 5. Bondeson D , Kvien I, Oksman K. Strategies for preparation of cellulose whiskers from microcrystalline cellulose as reinforcement in nanocomposites. Am Chem Soc (ACS symposium series; 938);2006: 1025.

    • Search Google Scholar
    • Export Citation
  • 6. Goodrich JD . The utilization of cellulose and chitin nanoparticles in biodegradable and/or biobased thermoplastic nanocomposites. PhD dissertation, State University of New York College of Environmental Science and Forestry, Syracuse, New York, U.S.; 2007.

    • Search Google Scholar
    • Export Citation
  • 7. Panaitescu, DM, Donescu, D, Bercu, C, Vuluga, DM, Iorga, M, Ghiurea, M 2007 Polymer composites with cellulose microfibrils. Polym Eng Sci 47 8 12281234 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Sturcova, A, Davies, GR, Eichhorn, SJ 2005 Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6 2 10551061 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Eichhorn, SJ, Baillie, CA, Zafeiropoulos, N, Mwaikambo, LY, Ansell, MP, Dufrense, A, Entwistle, KM, Herrera-Franco, PJ, Escamilla, GC, Groom, L, Hughes, M, Hill, C, Rials, TG, Wild, PM 2001 Review current international research into cellulosic fibers and composites. J Mater Sci 36:21072131 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Wielage, B, Lampke, T, Marx, G, Nestler, K, Starke, D 1999 Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene. Thermochim Acta 337 1–2 169177 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Kim, H-S, Kim, S, Kim, H-J, Yang, H-S 2006 Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim Acta 451 2 181188 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Kim, H-S, Yang, H-S, Kim, H-J, Lee, B-J, Hwang, T-S 2005 Thermal properties of agro-flour-filled biodegradable polymer bio-composites. J Therm Anal Calorim 81 2 299306 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Laka, MG, Chernyavskaya, SA 1996 Physicomechanical properties of composites containing Thermocell microcrystalline cellulose as filler. Mech Compos Mater 32 4 381386 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Maskavs, A, Kalnins, M, Laka, M, Chernyavskaya, S 2001 Physicomechanical properties of composites based on low-density polyethylene and cellulose-containing filers. Mech Compos Mater 37 2 159166 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Maskavs, M, Kalnins, M, Reihmane, S, Laka, M, Chernyavskaya, S 1999 Effect of water sorption of some mechanical parameters of composite systems based on low-density polyethylene and microcrystalline cellulose. Mech Compos Mater 35 1 5562 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Liang, H, Xie, F, Chen, B, Guo, F, Jin, Z, Luo, F 2007 Miscibility and melting behavior of poly(ethylene terephthalate)/poly(trimethylene terephthalate) blends. J Appl Polym Sci 107 1 431437 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Liang, H, Xie, F, Guo, F, Chen, B, Luo, F, Jin, Z 2008 Non-isothermal crystallization behavior of poly(ethylene terephthalate)/poly(trimethylene terephthalate) blends. Polym Bull 60:115127 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Wei, G, Wang, L, Chen, G, Gu, L 2005 Synthesis and characterization of poly (ethylene-co-trimethylene terephthalates). J Appl Polym Sci 100 2 15111521 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Son, TW, Kim, KI, Kim, NH, Jeong, MG, Kim, YH 2003 Thermal properties of poly(trimethylene terephthalate)/poly(ethylene terephthalate) melt blends. Fiber Polym 4 1 2026 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Chen, X, Yang, K, Gong, H, Chen, Y, Dong, Y, Liao, Z 2007 Crystallization behavior and crystal structure of poly(ethylene-co-trimethylene terephthalates). J Appl Polym Sci 105 5 30693076 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Ge, Q, Ding, X, Wu, G, Liang, S, Wu, S 2007 Study on the microstructure and mechanical properties of PET and PET/PTT Blends. Key Eng Mater 340–341:10851090 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Azizi Samir, MAS, Alloin, F, Sanchez, J-Y, Dufresne, A 2004 Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45 12 41494157 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Morin, A, Dufresne, A 2002 Nanocomposites of chitin whiskers from riftia tubes and poly(caprolactone). Macromolecules 35 6 21902199 .

  • 24. Seydibeyoglu, MO, Oksman, K 2008 Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Sci Technol 68:908914 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Perkin Elmer , Thermal Anlaysis, Application Note. Waltham, MA: Perkin Elmer Inc.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)