View More View Less
  • 1 Department of Restorative Dentistry, Araraquara School of Dentistry, São Paulo State University-UNESP, Humaitá St., 1680, Araraquara, SP, 14801-903, Brazil
  • | 2 Laboratório de Biofotônica, Grupo de Óptica, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
  • | 3 Grupo de Crescimento de Cristais e Materiais Cerâmicos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
Restricted access

Abstract

Thermal properties and degree of conversion (DC%) of two composite resins (microhybrid and nanocomposite) and two photo-activation methods (continuous and gradual) displayed by the light-emitting diode (LED) light-curing units (LCUs) were investigated in this study. Differential scanning calorimetry (DSC) thermal analysis technique was used to investigate the glass transition temperature (Tg) and degradation temperature. The DC% was determined by Fourier transform infrared spectroscopy (FT-IR). The results showed that the microhybrid composite resin presented the highest Tg and degradation temperature values, i.e., the best thermal stability. Gradual photo-activation methods showed higher or similar Tg and degradation temperature values when compared to continuous method. The Elipar Freelight 2TM LCU showed the lowest Tg values. With respect to the DC%, the photo-activation method did not influence the final conversion of composite resins. However, Elipar Freelight 2TM LCU and microhybrid resin showed the lowest DC% values. Thus, the presented results suggest that gradual method photo-activation with LED LCUs provides adequate degree of conversion without promoting changes in the polymer chain of composite resins. However, the thermal properties and final conversion of composite resins can be influenced by the kind of composite resin and LCU.

  • 1. Gatti, A, Rastelli, ANS, Ribeiro, SJL, Messaddeq, Y, Bagnato, VS. Polymerization of photocurable commercial dental methacrylate-based composites. J Therm Anal Calorim 2007 87:631634 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Charton, C, Falk, V, Marchal, P, Pla, F, Colon, P. Influence of Tg, viscosity and chemical structure of monomers on shrinkage stress in light-cured dimethacrylate-based dental resins. Dent Mater 2007 23:14471459 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Hilton, TJ. Can modern restorative procedures and materials reliably seal cavities? In vitro investigations. Part 1. Am J Dent. 2002;15:198210.

    • Search Google Scholar
    • Export Citation
  • 4. St-Georges, AJ AD Wilder Jr Perdigão, J EJ Swift Jr Microleakage of Class V composites using different placement and curing techniques: an in vitro study. Am J Dent 2002 15:244247.

    • Search Google Scholar
    • Export Citation
  • 5. Briso, AL, Mestrener, SR, Delicio, G, Sundfeld, RH, Bedran-Russo, AK RS de Alexandre Ambrosano, GM. Clinical assessment of postoperative sensitivity in posterior composite restorations. Oper Dent. 2007;32:421426 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Cunha, LG, Alonso, RCB, Neves, ACC MF de Goes Ferracane, JL, Sinhoreti, MAC. Degree of conversion and contraction stress development of a resin composite irradiated using halogen and led at two c-factor levels. Oper Dent. 2009;34:2431 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Rueggeberg, F. Contemporary issues in photocuring. Compend Contin Educ Dent Suppl. 1999;25:S4S15.

  • 8. Deb, S, Sehmi, H. A comparative study of the properties of dental resin composites polymerized with plasma and halogen light. Dent Mater 2003 19:517522 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Schneider, LFJ, Consani, S, Ogliari, F, Correr, AB, Sobrinho, LC, Sinhoreti, MAC. Effect of time and polymerization cycle on the degree of conversion of a resin composite. Oper Dent 2006 31:489495 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Caughman, WF, Rueggeberg, FA. Shedding new light on composite polymerization. Oper Dent 2002 27:636638.

  • 11. Leonard, DL. Critical appraisal: light-emitting-diode curing lights-revisited. J Esthet Restor Dent. 2007;19:5662 .

  • 12. Yap, AUJ, Seneviratne, C. Influence of light energy density on effectiveness of composite cure. Oper Dent 2001 26:460466.

  • 13. Halvorson, RH, Erickson, RL, Davidson, CL. Energy dependent polymerization of resin-based composite. Dent Mater 2002 18:463469 .

  • 14. Peutzfeldt, A, Asmussen, E. Resin composite properties and energy density of light cure. J Dent Res 2005 84:659662 .

  • 15. Asmussen, E, Peutzfeldt, A. Polymerization contraction of resin composite vs energy and power density of light-cure. Eur J Oral Sci 2005 113:417421 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Calheiros, FC, Kawano, Y, Stansbury, JW, Braga, RR. Influence of radiant exposure on contraction stress, degree of conversion and mechanical properties of resin composites. Dent Mater 2006 22:799803 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Dewaele, M, Asmussen, E, Peutzfeldt, A, Cristian Munksgaard, E, Benetti, AR, Finné, G, Leloup, G, Devaux, J. Influence of curing protocol on selected properties of light-curing polymers: degree of conversion, volume contraction, elastic modulus, and glass transition temperature. Dent Mater 2009 25:15761584 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Benetti, AR, Asmussen, E, Munksgaard, EC, Dewaele, M, Peutzfeldt, A, Leloup, G, Devaux, J. Softening and elution of monomers in ethanol. Dent Mater 2009 25:10071013 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Dewaele, M, Truffier-Boutry, D, Devaux, J, Leloup, G. Volume contraction in photocured dental resins: the shrinkage-conversion relationship revisited. Dent Mater 2006 22:359365 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Asmussen, E, Peutzfeldt, A. Two-step curing: influence on conversion and softening of a dental polymer. Dent Mater 2003 19:466470 .

  • 21. Soh, MS, Yap, AUJ. Influence of curing modes on crosslink density in polymer structures. J Dent 2004 32:321326 .

  • 22. Yap, AU, Soh, MS, Han, TT, Siow, KS. Influence of curing lights and modes on cross-link density of dental composites. Oper Dent 2004 29:410415.

    • Search Google Scholar
    • Export Citation
  • 23. Rastelli, ANS, Jacomassi, DP, Bagnato, VS. Effect of power densities and irradiation times on the degree of conversion and temperature increase of a microhybrid dental composite resin. Laser Phys 2008 18:10741079 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Fróes-Salgado, NRG, Pfeifer, CSC, Francci, CE, Kawano, Y. Influence of photoactivation protocol and light guide distance on conversion and microleakage of composite restorations. Oper Dent 2009 34:408414 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Asmussen, E, Peutzfeldt, A. Influence of selected components on crosslink density in polymer structures. Eur J Oral Sci 2001 108:282285 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Asmussen, E, Peutzfeldt, A. Influence of pulse-delay curing on softening of polymer structures. J Dent Res 2001 80:15701573 .

  • 27. Tamareselvy, K, Rueggeberg, F. Dynamic mechanical analysis of two crosslinked copolymer systems. Dent Mater 1994 10:290297 .

  • 28. Rueggeberg, FA, Erge, JW, Mettenburg, DJ. Polymerization depths of contemporary light curing units using microhardness. J Esthet Dent 2000 12:340349 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Vandewalle, KS, Ferracane, JL, Hilton, T, Erickson, RL, Sakaguchi, RL. Effect of energy density on properties and marginal integrity of posterior resin composite restorations. Dent Mater 2004 20:96106 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Rastelli, ANS, Jacomassi, DP, Bagnato, VS. Degree of conversion and temperature increase of a composite resin light cured with an argon laser and blue LED. Laser Phys 2008 18:15701575 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Lovell, LG, Lu, H, Elliott, JE, Stansbury, JW, Bowman, CN. The effect of cure rate on the mechanical properties of dental resins. Dent Mater 2001 17:504511 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Anseth, S, Bowman, CN. Kinetic gelation model predictions of crosslinked polymer network microstructure. Chem Eng Sci 1994 49:22072217 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Groenewoud, W Characterization of polymers by thermal analysis 2001 Elsevier St Louis.

  • 34. Witzel, MF, Calheiros, FC, Gonçalves, F, Kawano, Y, Braga, RR. Influence of photoactivation method on conversion, mechanical properties, degradation in ethanol and contraction stress of resin-based materials. J Dent 2005 33:773779 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Obici, AC, Sinhoreti, MAC, Frollini, E, Sobrinho, LC, Goes, MF, Henriques, GEP. Monomer conversion at different dental composite depths using six light-curing methods. Polym Testing 2006 25:282288 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Soares, LES, Liporoni, PCS, Martin, AA. The effect of soft-start polymerization by second generation LEDs on the degree of conversion of resin composite. Oper Dent 2007 32:160165 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Lu, H, Stansbury, JW, Bowman, CN. Impact of curing protocol on conversion and shrinkage stress. J Dent Res 2005 84:822826 .

  • 38. Lopes, LG, Franco, EB, Pereira, JC, Mondelli, RFL. Effect of light-curing units and activation mode on polymerization shrinkage and shrinkage stress of composite resins. J Appl Oral Sci 2008 16:3542 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Ruyter, IE, Oeysaed, H. Composites for use in posterior teeth: composition and conversion. Biomed Mater Res 1987 21:1123 .

  • 40. Vogel, BM, Mallapragada, SK. Synthesis of novel biodegradable polyanhydrides containing aromatic and glycol functionality for tailoring of hydrophilicity in controlled drug delivery devices. Biomaterials 2005 26:721728 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Nomura, Y, Teshima, W, Tanaka, N, Yoshida, Y, Nahara, Y, Okazaki, M. Thermal analysis of dental resins cured with blue light-emitting diodes (LEDs). J Biomed Mater Res 2002 63:209213 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Bernardi, MIB, Rojas, SS, Andreeta, MRB, Rastelli, ANS, Hernandes, AC, Bagnato, VS. Thermal analysis and structural investigation of different dental composite resins. J Therm Anal Calorim 2008 94:791796 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Watts, DC. Reaction kinetics and mechanics in photo-polymerised networks. Dent Mater. 2005;21:2735 .

  • 44. Hofmann, N, Markert, T, Hugo, B, Klaiber, B. Effect of high intensity vs. soft-start irradiation on light-cured resin-based composites. Part II: hardness and solubility. Am J Dent 2004 17:3842.

    • Search Google Scholar
    • Export Citation
  • 45. Rueggeberg, FA, Caughman, WF JW Curtis Jr Effect of light intensity and exposure duration on cure of resin composite. Oper Dent 1994 19:2632.

    • Search Google Scholar
    • Export Citation
  • 46. Moraes, LGP, Rocha, RS, Menegazzo, LM EB de Araujo Yukimoto, K, Moraes, JC. Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites. J Appl Oral Sci. 2008;16:145149 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Silikas, N, Eliades, G, Watts, DC. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent Mater 2000 16:292296 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48. Stansbury, JW, Dickens, SH. Determination of double bond conversion in dental resins by near infrared spectroscopy. Dent Mater 2001 17:7179 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49. Gauthier, MA, Stangel, I, Ellis, TH, Zhu, XX. A new method for quantifying the intensity of the C=C band of dimethacrylate dental monomers in their FTIR and Raman spectra. Biomaterials 2005 26:64406448 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50. Sustercic, D, Cevc, P, Funduk, N, Pintar, MM. Determination of curing time in visible-light-cured composite resins of different thickness by electron paramagnetic resonance. J Mater Sci Mater Med 1997 8:507510 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51. Morgan, DR, Kalachandra, S, Shobha, HK, Gunduz, N, Stejskal, EO. Analysis of a dimethacrylate copolymer (BisGMA and TEGDMA) network by DSC and 13C solution and solid-state NMR spectroscopy. Biomaterials 2000 21:18971903 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52. Antonucci, JM, Toth, EE. Extent of polymerization of dental resins by differential scanning calorimetry. J Dent Res 1983 62:121125 .

  • 53. Imazato, S, McCabe, JF, Tarumi, H, Ehara, A, Ebisu, S. Degree of conversion of composites measured by DTA and FTIR. Dent Mater 2001 17:178183 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54. Bouschilicher, MR, Rueggeberg, FA. Effect of ramped light intensity on polymerization force and conversion in a photoactivated composite. J Esthet Dent 2000 12:328339 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55. Emami, N, Söderholm, KJ. How light irradiance and curing time affect monomer conversion in light-cured resin composites. Eur J Oral Sci 2003 111:536542 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56. Rueggeberg, FA. Determination of resin cure using infrared analysis without an internal standard. Dent Mater. 1994;10:282286 .

  • 57. Halvorson, RH, Erickson, RL, Davidson, CL. The effect of filler and silane content on conversion of resin-based composite. Dent Mater 2003 19:327333 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58. Bala, O, Ölmez, A, Kalayci, S. Effect of LED and halogen light curing on polymerization of resin-based composites. J Oral Rehabil 2005 32:134140 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59. Turssi, CP, Ferracane, JL, Vogel, K. Filler features and their effects on wear and degree of conversion of particulate dental resin composites. Biomaterials 2005 26:49324937 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60. Ferracane, JL, Aday, P, Matsumoto, H, Marker, VA. Relationship between shade and depth of cure for light-activated dental composite resins. Dent Mater 1986 2:8084 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61. Rojas SS , Frigo GJM, Bernardi MIB, Rastelli ANS, Hernandes AC, Bagnato VS. Thermal and structural properties of commercial dental resins light-cured with blue emitting diodes (LEDs). J Therm Anal Calorim. 2009. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)