View More View Less
  • 1 DCCI, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
  • | 2 INSTM – Genoa Research Unit of National Consortium of Materials Science and Technology, Via Dodecaneso 31, 16146, Genoa, Italy
  • | 3 CNR-SPIN Genova, Corso Perrone 24, 16152, Genoa, Italy
  • | 4 CNR-IMEM, Via Dodecaneso 33, 16146, Genoa, Italy
Restricted access

Abstract

In the search for new intermetallic materials with high thermoelectric performances, the Co–Sb–S ternary system has been explored and polycrystalline CoSbS samples have been prepared by a vapour phase technique starting from the pure elements. The crystal cell of CoSbS belongs to the Pbca space group and shows an orthorhombic structural arrangement with the following lattice parameters: a = 5.8341(2) Å; b = 5.9477(2) Å, and c = 11.6540(4) Å. The structure belongs to the pyrite–marcasite family, as Co forms tilted corner- and edge-sharing octahedra with three Sb and three S atoms. Scanning electronic microscopy (SEM), electron-probe microanalysis (EPMA) and X-ray powder diffraction were used to investigate the microstructure and to carry out the structural analysis; the crystal structure was refined by the Rietveld method using the DBWS-9807 program. The thermal stability of CoSbS was investigated referring to the ternary Co–S–Sb phase diagram and by differential thermal analysis (DTA) measurements. Thermoelectric power measurements at room temperature were also performed by a home-made instrument.

  • 1. Snyder, GJ, Toberer, ES. Complex thermoelectric materials. Nat Mater 2008 7:105114 .

  • 2. Kawaharada, Y, Kurosaki, K, Uno, M, Yamanaka, S. Thermoelectric properties of CoSb3. J Alloys Compd 2001 315:193197 .

  • 3. Zhang, JX, Lu, QM, Liu, KG, Zhang, L, Zhou, ML. Synthesis and thermoelectric properties of CoSb3 compounds by spark plasma sintering. Mater Lett 2004 58:19811984 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Furuyama, S, Iida, T, Matsui, S, Akasaka, M, Nishio, K, Takanashi, Y. Thermoelectric properties of undoped p-type CoSb3 prepared by vertical Bridgman crystal growth and spark plasma sintering. J Alloys Compd 2006 415:251256 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Nakamoto, G, Yoshida, Y, Vu, LV, Huong, NT, Anh, DTK, Kurisu, M. Effect of segregated impurity phases on lattice thermal conductivity in Y-added CoSb3. Scr Mater 2007 56:269272 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Jiang, YP, Jia, XP, Su, TC, Dong, N, Yu, FR, Tian, YJ, Guo, W, Xu, HW, Deng, L, Ma, HA. Thermoelectric properties of SmxCo4Sb12 prepared by high pressure and high temperature. J Alloys Compd 2010 493:535538 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Mi, JL, Zhao, XB, Zhu, TJ, Tu, JP. Nanosized La filled CoSb3 prepared by a solvothermal-annealing method. Mater Lett 2008 62:23632365 .

  • 8. Wojciechowski, KT. Effect of tellurium doping on the thermoelectric properties of CoSb3. Mater Res Bull. 2002;37:20232033 .

  • 9. Chitroub, M, Besse, F, Scherrer, H. Thermoelectric properties of semi-conducting compound CoSb3 doped with Pd and Te. J Alloys Compd 2009 467:3134 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Kim, I-H, Park, K-H, Ur, S-C. Thermoelectric properties of Sn-doped CoSb3 prepared by encapsulated induction melting. J Alloys Compd 2007 442:351354 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Wojciechowski, KT, Tobola, J, Leszczyński, J. Thermoelectric properties and electronic structure of CoSb doped with Se and Te. J Alloys Compd 2003 361:1927 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Kim, IH, Ur, SC. Electronic transport properties of Fe-doped CoSb3 prepared by encapsulated induction melting. Mater Lett 2007 61:24462450 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Kitagawa, H, Wakatsuki, M, Nagaoka, H, Noguchi, H, Isoda, Y, Hasezaki, K, Noda, Y. Temperature dependence of thermoelectric properties of Ni-doped CoSb3. J Phys Chem Solids 2005 66:16351639 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Al-Ghamdi, AA. Thermoelectric power (TEP) of layered chalcogenides GaTe crystals. J Therm Anal Calorim. 2008;94:597600 .

  • 15. Vaqueiro, P, Sobany, GG, Stindl, M. Structure and electrical transport properties of the ordered skutterudites MGe1.5S1.5 (M = Co, Rh, Ir). J Solid State Chem 2008 181:768776 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Bos, JWG, Cava, RJ. Synthesis, crystal structure and thermoelectric properties of IrSn1.5Te1.5-based skutterudites. Solid State Commun 2007 141:3841 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Laufek, F Navrátil 2008 Plášil, J, Plecháček, T. Crystal structure determination of CoGeTe from powder diffraction data. J Alloys Compd 460:155159 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Vaqueiro, P, Sobany, GG, Guinet, F, Leyva-Bailen, P. Synthesis and characterization of the anion-ordered tellurides MGeTe. Solid State Sci 2009 11:10771082 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Schenck, R P Von der Forst Gleichgewichtsstudien and erzbildenden Sulfiden III. Z Anorg Allg Chem 1942 249:7687 .

  • 20. Allazov, MR, Gulieva, ZT. Physicochemical interaction in the CoS–Sb and NiS–Sb systems. Russ J Inorg Chem 1988 33:10751078.

  • 21. Young, RA, Sakthiel, A, Moss, TS, Paiva-Santos, CO. DBWS-9411, an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers. J Appl Cryst 1995 28:366367 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Uher, C Skutterudite-based thermoelectrics 2006 DM Rowe eds. Thermoelectrics handbook Taylor & Francis Boca Raton 34-134-17.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 2 0 0
May 2021 2 0 0
Jun 2021 8 0 0
Jul 2021 1 0 0
Aug 2021 6 0 0
Sep 2021 2 1 1
Oct 2021 0 0 0