Authors:
Emilien Burger Centre de Recherche et de Restauration des Musées de France (C2RMF), UMR 171, CNRS, Palais du Louvre, 4 quai François Mitterrand, 75001, Paris, France

Search for other papers by Emilien Burger in
Current site
Google Scholar
PubMed
Close
,
David Bourgarit Centre de Recherche et de Restauration des Musées de France (C2RMF), UMR 171, CNRS, Palais du Louvre, 4 quai François Mitterrand, 75001, Paris, France

Search for other papers by David Bourgarit in
Current site
Google Scholar
PubMed
Close
,
Vincent Frotté CEA/DAM, Le Ripault, BP 16 F, 37260, Monts, France

Search for other papers by Vincent Frotté in
Current site
Google Scholar
PubMed
Close
, and
Fabien Pilon CEA/DAM, Le Ripault, BP 16 F, 37260, Monts, France

Search for other papers by Fabien Pilon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This article deals with one specific step of the copper extractive metallurgy process: the roasting of iron–copper sulphides. It aims at shedding light on an archaeological issue: the reconstruction of the copper extractive metallurgy processes during protohistory (IVe–IIe millennium BC). Experimental simulations are performed at laboratory scale by modelizing the conditions of protohistoric furnaces. Kinetic of roasting is studied by thermogravimetry combined with the physico-chemical analysis of synthetic products. The influence of two parameters is studied: (i) the temperature (773, 973 and 1173 K) and (ii) the granularity of the roasted ores (1 mm and 100 μm). In each case, the chemical mechanism governing the oxidation of iron copper sulphide is proposed. Apart from one extreme case ( = 1 mm; T = 773 K), it is showed that kinetic is controlled by the transport of molecular oxygen (O2) from the gas to the grain surface. Moreover, we prove that, in some cases where the diffusivity of gaseous oxygen is low, roasting can be accelerated by the presence of an oxide, which constitute an in-situ source of oxygen. Theses experiments support the hypothesis that such a technique could have allowed a roasting process where iron and sulfur were removed by the solid oxygen instead of the gaseous oxygen. These results allow to validate a one-step copper smelting process starting from sulphidic ores, and to identify the experimental parameters of this process.

  • 1. Bourgarit D . Chalcolithic copper smelting. In: Proceedings of the conference on metallurgy—a touchstone for cross-cultural interaction. The British Museum, London; 2007.

    • Search Google Scholar
    • Export Citation
  • 2. Eibner, C Kupferbergbau in Österreichs Alpen. Prähistorische Archäologie in Südosteuropa 1982 1:399408.

  • 3. Mette B . Beitrag zur spätbronzezeitlichen Kupfermetallurgie im Trentino (Südalpen) im Vergleich mit anderen prähistorischen Kupferschlacken aus dem Alpenraum, Metalla, Bochum. 2005; 10 (½,): 1-122.

    • Search Google Scholar
    • Export Citation
  • 4. Moesta, H, Schlick, G 1990 The furnace of Mitterberg: an oxidizing Bronze Age copper process. Bull Met Mus 14:516.

  • 5. Burger E . PhD thesis, Université Pierre et Marie Curie, France; 2008.

  • 6. Razouk, RI, Farah, MY, Mikhail, RS, Kolta, GA 1961 The roasting of precipitated copper sulphide. J Appl Chem 12 4 190196 .

  • 7. Kennedy, T, Sturman, BT 1975 The oxidation of iron(II) sulphides. J Therm Anal Calorim 8 2 329337 .

  • 8. Biswas, AK, Davenport, WG 1980 Extractive metallurgy of copper. International series on materials sciences and technology 2 Pergamon New York.

    • Search Google Scholar
    • Export Citation
  • 9. Debinski, H, Walczak, J 1986 The reaction of copper(I) sulphide with a product of its oxidation copper(II) sulphate. J Therm Anal 31:779789 .

  • 10. Bayer, G, Wiedemann, HG 1992 Thermal analysis of chalcopyrite roasting reactions. Thermochim Acta 198 2 303312 .

  • 11. Zivkovic, Z, Mitevska, N, Savovic, V 1996 Kinetics and mechanism of the chalcopyrite-pyrite concentrate oxidation process. Thermochim Acta 282:121130 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Prasad, S, Pandey, BD 1999 Thermoanalytical studies on copper–iron sulphides. J Therm Anal Calorim 58 3 625637 .

  • 13. Minić, D, Štrbac, N, Mihajlović, I, Živković, Z 2005 Thermal analysis and kinetics of the copper-lead matte roasting process. J Therm Anal Calorim 82 2 383388 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Zivkovic, Z, Štrbac, N, Zivkovic, D, Velinovski, V, Mihajlovic, I 2005 Kinetic study and mechanism of chalcocite and covellite oxidation process. J Therm Anal Calorim 79:715720 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Bylina, I, Trevani, L, Mojumdar, SC, Tremaine, P, Papangelakis, VG 2009 Measurement of reaction enthalpy during pressure oxidation of sulphide minerals. J Therm Anal Calorim 96:117124 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Isakova, RA et al. 1969 Dissociation pressure of chalcopyrite and bornite. Izv Akad Nauk Kaz 19 5 7881.

  • 17. Habashi, F 1978 Its chemistry and metallurgy Department of Mining and Metallurgy, Laval University Canada.

  • 18. Adda, Y, Philibert, J 1966 La diffusion dans les solides Presses Universitaires De France Parsi.

  • 19. Ajersh, F, Toguri, JM 1972 Oxidation rates of liquid copper and liquid copper sulfide. Metall Trans 3:21872193 .

  • 20. Gaskell, DR 1981 Introduction to metallurgical thermodynamics 2 MacGraw Hill International Edition New York.

  • 21. Chaubal, PC, Sohn, HY 1986 Intrinsic kinetics of the oxidation of chalcopyrite grains under isothermal and non-isothermal conditions. Metall Mater Trans B 17 B 5160.

    • Search Google Scholar
    • Export Citation
  • 22. Ganguly, ND, Mukherjee, SK 1967 Studies on the mechanism and kinetics of the oxidation of copper sulphide-I: oxidation of copper sulphide in a fixed bed. Chem Eng Sci 22:10911105 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Charrier, J 1954 Contribution à l’étude de la décomposition des minerais sulfurés dans l'air par l'analyse thermique pondérale. Annales de la faculté des sciences de Toulouse 4 18 97160.

    • Search Google Scholar
    • Export Citation
  • 24. Bourgarit, D, Rostan, P, Burger, E, Carozza, L, Artioli, G 2008 The beginning of copper mass production in the southern part of western Alps: the Saint-Véran mining area considered (Hautes-Alpes, France). Histor Metall 42 1 111.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2024 14 0 0
Oct 2024 105 0 0
Nov 2024 52 0 0
Dec 2024 38 0 0
Jan 2025 61 0 0
Feb 2025 60 0 0
Mar 2025 27 0 0