View More View Less
  • 1 Institute for Sorption and Problems of Endoecology, NAS of Ukraine, Kyiv, Ukraine
  • | 2 O. O. Chuiko Institute of Surface Chemistry, NAS of Ukraine, Kyiv, Ukraine
  • | 3 Faculty of Chemistry, Maria Curie-Skłodowska University, Poland, Lublin
Restricted access

Abstract

Compositions based on oxides and containing 5–20% w/w of ammonium molybdophosphate have been synthesized by means of different routes. Prepared samples have been studied using nitrogen adsorption–desorption, XRD, DTA–TG, and FTIR spectroscopy. Keggin structure is retained at incorporation of ammonium molybdophosphate into siliceous framework or its deposition on oxide surface and duration following calcinations up to 500 °C. Compositions possess porous structure from micromesoporous to mesomacroporous depending on the preparation method.

  • 1. Pope, MT 1983 Heteropoly and isopoly oxometallates Springer Berlin.

  • 2. Pope, MT, Müller, A 1991 Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem Int Ed Engl. 30:3448 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Okuhara, T, Mizuno, N, Misono, M 1996 Catalytic chemistry of heteropoly compounds. Adv Catal. 41:113252 .

  • 4. Moffat, JB 2001 The surface and catalytic properties of heteropoly oxometalates, fundamental and applied catalysis Kluwer Academic/Plenum Publishers New York.

    • Search Google Scholar
    • Export Citation
  • 5. Cavani, F, Mezzogori, R, Pigamo, A, Trifiro, F, Etienne, E 2001 Main aspect of the selective oxidation of isobutene to methacrylic acid catalyzed by Keggin-type polyoxometallates. Catal Today. 71:97110 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Yamaze, T Photo- and electrochromism of polyoxometalates and related materials. Chem Rev. 1998 98:307326 .

  • 7. Zhang, TR, Feng, W, Lu, R, Bao, CY, Li, TJ, Zhao, YY, Yao, JN 2002 Preparation of photochromic sol-gel composite films containing dodecaphosphotungstic acid. Mater Chem Phys. 78:380384 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Kormali, P, Troupis, A, Triantis, T, Hiskia, A, Papaconstantinou, E 2007 Photocatalysis by polyoxometallates and TiO2: a comparative study. Catal Today. 124:149155 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. María, D, Hernández-Alonso, A, Fernando Fresno, B, Silvia Suárez, A, Juan, M 2009 Coronado development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci. 2:12311257 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Sydorchuk, V, Zazhigalov, V, Khalameida, S, Skubiszewska-Zięba, J, Charmas, B, Leboda, R 2009 Deposition of tungsten heteropolycompounds on activated silica surface. Colloids Surf A 341:5359 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Tarlani, A, Abedini, M, Nemati, A, Khabaz, M, Amini, MM 2006 Immobilization of Keggin and Preyssler tungsten heteropolyacids on various functionalized silica. J Colloid Interface Sci. 303:3238 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Mrowiec-Bialon, J, Turek, W, Jarz˛ebski, AB 2002 Preparation of highly active heteropolyacid-silica composite catalysts using sol–gel method. React Kinet Catal Lett. 76:213219 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Fuchs, V, Mendez, L, Blanco, M, Pizzio, L 2009 Mesoporous titania directly modified with tungstophosphoric acid: synthesis, characterization and catalytic evaluation. Appl Catal A 358:7378 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Alcoutlabi, M, McKenna, GB 2005 Effect of confinement on material behaviour at the nanometer size scale. J Phys Condens Matter. 17:R461R524 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Burt, MC, Dave, BC 2006 Externaly dynamic confinement effect in organosilica sol-gels. J Am Chem Soc. 128:1175011751 .

  • 16. Amphlett, CB 1964 Inorganic ion exchangers Elsevier New York.

  • 17. Clearfield, A 1982 Inorganic ion exchanger materials CRC Press Boca Raton.

  • 18. Smit, J 1991 Insoluble heterolyacid salts M Qureshi KG Varshney eds. Inorganic ion exchangers in chemical analysis CRC Press Boston 6869.

    • Search Google Scholar
    • Export Citation
  • 19. Caletka, R, Konečnŷ, C 1972 Adsorption properties of ammonium molybdophosphate supported in pores of silica gel. Radiochim Radioanal Lett. 12:325329.

    • Search Google Scholar
    • Export Citation
  • 20. Doležal, J, Stejskal, J, Tympl, M, Kouřim, V 1974 Improved inorganic ion-exchangers. II Ammonium molybdophosphate–silica gel system. J Radioanal Chem. 21:381387 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Terada, K, Hayakawa, H, Sawada, K, Kiba, T 1970 Silica gel as a support for inorganic ion-exchangers for the determination of cesium-137 in natural waters. Talanta 17:955963 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Tranter TJ , Aloy AS, Sapozhnikova NV, Knecht DA, Todd TA. Porous crystalline silica (gubka) as a inorganic support matrix for novel sorbent. Mat Res Soc Symp. 2002;713: JJ11.68.1-7.

    • Search Google Scholar
    • Export Citation
  • 23. Satyannarayana, J, Murthy, GS, Sassidhar, P 1999 Adsorption studies of cesium on a new inorganic exchanger ammonium molybdophosphate–alumina (AMP–Al2O3). J Radioanal Nucl Chem. 242:1116 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Matsuda, A, Daiko, Y, Ishida, T, Tadanaga, K, Tatsumisago, M 2007 Characterization of proton-conducyive SiO2–H3PMo12O40 composites prepared by mechanochemical treatment. Solid State Ion. 178:709712 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Berezovska, IS, Yanishpolskii, VV, Tertykh, VA 2008 Synthesis of mesoporous silicas inside large pores of inorganic matrix. J Therm Anal Calorim. 94:649653 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Sidorchuk VV , Tertykh VA, Klimenko VP, Ragulya AV. Formation and some properties of barium titanate embedded into porous matrices. J Therm Anal Calorim. DOI .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Heinike, G 1980 Tribochemistry Academie Verlag Berlin.

  • 28. Popa, A, Sasca, V, Stefanescu, M, Kiš, EE, Marinković-Nedučin, R 2006 The influence of the nature and textural properties of different supports on the thermal behavior of Keggin type heteropolyacids. J Serb Chem Soc. 71:235249 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Iler, RK 1979 Chemistry of silica Wiley New York.

  • 30. Sydorchuk V , Khalameida S, Zazhigalov V, Skubiszewska-Zięba J, Leboda R, WieczorekCiurowa K. Influence of mechanochemical activation in various media on structure of porous and non-porous silicas. Appl Surf Sci. (in press).

    • Search Google Scholar
    • Export Citation
  • 31. Sasca, V, Ştefãnescu, M, Popa, A 1999 Studies on the non-isothermal decomposition of H3PMo12O40·xH2O and H4PVMo11O40·yH2O. J Therm Anal Calorim. 56:569578 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Sasca, V, Stefanescu, M, Popa, A 2003 Thermal behavior of the polyoxometalates derived from H3PMo12O40 and H4PVMo11O40. J Therm Anal Calorim. 72:311322 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Rocchiccioli-Deltcheff, C, Amirouche, M, Herve, G, Fournier, M, Che, M, Tatibouet, JM 1990 Structure and catalytic properties of silica-supported polyoxomolybdates: II. Thermal behavior of unsupported and silica-supported 12-molybdosilicic acid catalysts from IR and catalytic reactivity studies. J Catal. 126:591599 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Bridgeman, AJ 2003 Density functional study of the vibrational frequencies of a Keggin-heteropolyanions. Chem Phys. 287:5569 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 1 0 0
Jul 2021 0 0 0
Aug 2021 3 0 0
Sep 2021 2 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0
Dec 2021 0 0 0