View More View Less
  • 1 Institute of Solution Chemistry, Russian Academy of Sciences, 1, Academicheskaya str, 153045, Ivanovo, Russia
Restricted access

Abstract

Enthalpies of solution of tetra-n-hexylammonium bromide in anhydrous methanol (MeOH), formamide (FA), and ethylene glycol (EG) have been measured at 298.15 and 313.15 K. The integral solution enthalpies (ΔsolHm) of Hex4NBr and literature data for Et4NBr and Bu4NBr have been extrapolated to infinite dilution using the Redlich–Rosenfeld–Meyer-type equation to give the corresponding standard enthalpies of solution (ΔsolH0). Linear correlation between ΔsolH0(Bu4NBr) and ΔsolH0 (Hex4NBr) has been obtained in MeOH, FA, and EG. Relations allowing to predict the ΔsolH0 value of Hex4NBr in FA, NMF, DMF, and NMA at various temperatures have been proposed. The integral heat method has been employed to obtain partial molar heat capacities of the tetraalkylammonium bromides in MeOH, FA, and EG. It has been shown that the values of Et4NBr and Bu4NBr in methanol and formamide determined by this method are in good agreement with values obtained by the flow calorimetry data.

  • 1. Kustov, AV, Smirnova, NL, Antonova, OA, Korolev, VP. The enthalpies and heat capacities of solution of tetraethyl- and tetrabutylammonium bromides in methanol, formamide and ethylene glycol. Russ J Phys Chem 2008 82:233236.

    • Search Google Scholar
    • Export Citation
  • 2. Frank, HS, Wen, WY. Ion—solvent interaction. Structural aspects of ion—solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss Faraday Soc 1957 24:133140 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Arnett, EM, Campion, JJ. Heat capacities of organic compounds in solution. II. Some tetraalkylammonium bromides. J Am Chem Soc 1970 92:70977101 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. C De Visser Somsen, G. Enthalpies of solution and heat capacities of tetra-n-butylammonium bromide in several solvents from 278 to 328 K. J Chem Thermodyn. 1973;5:147152 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Korolev VP , Antonova OA, Smirnova NL, Kustov AV. Thermochemistry of Bu4NBr solutions in binary solvents containing formamide. J Therm Anal Calorim. 2009;96: 90310. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Mastroianni, MJ, Criss, CM. Heat capacities of tetraalkylammonium bromides in water and in anhydrous methanol at various temperatures. J Chem Thermodyn 1972 4:321330 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Shin, C, Criss, CM. Partial molal heat capacities of tetraalkylammonium bromides in methanol from 10 to 50 °C. J Solut Chem 1978 7:205217 .

  • 8. French, RN, Criss, CM. Effect of charge on the standard partial molar volumes and heat capacities of organic electrolytes in methanol and water. J Solut Chem. 1982 11:625648 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Chen, T, Hefter, G, Buchner, R, Senanayake, G. Molar volumes and heat capacities of electrolytes and ions in nonaqueous solvents: 1 Formamide. J Solut Chem. 1998 27:10671095 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Marcus, Y, Hefter, G. Ionic partial molar heat capacities in non-aqueous solvents. J Chem Soc Faraday Trans 1996 92:757761 .

  • 11. Kustov, AV, Korolev, VP. Temperature and length scale dependence of tetraalkylammonium ion—amide interaction. J Phys Chem B 2008 112:20402044 .

  • 12. Belousov VP , Shutin SG. Kalorimetriya smesheniya (Calorimetry of mixing). In: Eksperimental'nye metody khimii rastvorov (Experimental methods of solution chemistry): Spektroskopiya i kalorimetriya (Spectroscopy and Calorimetry). Krestov GA, editor. Moscow: Nauka; 1995.

    • Search Google Scholar
    • Export Citation
  • 13. Kustov, AV, Emel'yanov, AA, Syschenko, AF, Krest'yaninov, MA, Zheleznyak, NI, Korolev, VP. Calorimetric apparatus for measurement of thermal effects of processes in solutions. Russ J Phys Chem 2006 80:15321536 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Wadsö, I, Goldberg, RN. Standards in isothermal microcalorimetry (IUPAC Technical Report). Pure Appl Chem 2001 73:16251639 .

  • 15. Krishnan, CV, Friedman, HL. Solvation enthalpies of electrolytes in methanol and dimethylformamide. J Phys Chem 1971 75:36063612 .

  • 16. KS Pitzer eds. 1991 Activity coefficient in electrolyte solutions 2 CRC Press Boca Raton, FL.

  • 17. Sun, TF, Schouten, JA, Trappeniers, NJ, Biswas, SN. Measurements of the densities of liquid benzene, cyclohexane, methanol and ethanol as functions of temperature at 0.1 MPa. J Chem Thermodyn 1988 20:10891096 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Denney DY , Cole RH. J Chem Phys. 1955;23: 1167. In: Akhadov YaYu. Dielektricheskie svoistva binarnykh rastvorov. Spravochnik. (Dielectric properties of binary solutions: A Handbook). Moscow: Nauka; 1977.

    • Search Google Scholar
    • Export Citation
  • 19. Albright, PS, Gosting, HJ. Dielectric constants of the methanol–water system from 5 to 550. J Am Chem Soc 1946 68:10611063 .

  • 20. Tommila E , Autio T. Suomen Kem. 1969;42:B10710. In: Krestov GA, Afanas'ev VN, Efremova LS. Fiziko-khimicheskie svoistva binarnykh rastvoritelei. Spravochnik. (Physico-chemical properties of binary solvents: a handbook). Moscow: Nauka; 1988.

    • Search Google Scholar
    • Export Citation
  • 21. Abraham, MH, Marcus, Y, Lawrence, KG. The thermodynamics of solvation of ions. Part 3. The heat capacity for solvation of gaseous ions in methanol at 298.15 K. J Chem Soc Faraday Trans I 1988 84:175185 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Bohne, D, Fischer, S, Obermeier, E. Thermal conductivity, density, viscosity, and Prandtl—numbers of ethylene glycol–water mixtures. Ber Bunsenges Phys Chem 1984 88:739742.

    • Search Google Scholar
    • Export Citation
  • 23. Srivastava, GP, Varshni, YP. Temperature and concentration of the dielectric constant of mixtures of organic liquids and water. Z Phys Chem (DDR) 1960 213:3036.

    • Search Google Scholar
    • Export Citation
  • 24. Dunn, LA, Stokes, RH. Pressure and temperature dependence of the electrical permittivities of formamide and water. Trans Faraday Soc 1969 65:29062912 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Korolev, VP. Parameters of the interaction between components; structural and hydrophobic effects in systems water–ethylene glycol–n-butyl alcohol and water–ethanol–xenon at 248–348 K. J Struct Chem. 2006;47:699710 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Burns, JA, Verrall, RE. Thermodynamics of tetraalkyl- and bis-tetraalkylammonium bromides. II. Heat capacities of solid state from 273 to 373 K. Thermochim Acta 1974 9:277287 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Shin, C, Worsley, I, Criss, CM. Partial molal heat capacities of aqueous tetraalkylammonium bromides as functions of temperature. J Solut Chem 1976 5:867879 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Kinchin AN . Vliyanie temperatury na termodinamicheskie kharakteristiki solvatatsii individualnykh ionov (tetraalkilammoniya, chshelochnykh metallov i galogenov) v odno-atomnykh spirtakh v intervale 233-328 K (Influence of temperature on thermodynamic characteristics of solvation of individual ions (tetraalkylammonium, alkali metals and halogens) in monoatomic alcohols in 233-328 K intervals). Cand Sci (Chem) Dissertation. Ivanovo: Inst Non-aq Solut Chem AS USSR; 1988.

    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 2 0 0
Sep 2021 4 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0