Authors:
Michele Iafisco Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
Dipartimento di Scienze Mediche, Università del Piemonte Orientale, Via Solaroli 4, 28100, Novara, Italy ismaela.foltran@unibo.it

Search for other papers by Michele Iafisco in
Current site
Google Scholar
PubMed
Close
,
Ismaela Foltran Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
Dipartimento di Scienze Mediche, Università del Piemonte Orientale, Via Solaroli 4, 28100, Novara, Italy ismaela.foltran@unibo.it

Search for other papers by Ismaela Foltran in
Current site
Google Scholar
PubMed
Close
,
Michele Di Foggia Dipartimento di Biochimica ‘G. Moruzzi’ Alma Mater Studorium, Università di Bologna, Via Belmeloro 8/2, 40126, Bologna, Italy

Search for other papers by Michele Di Foggia in
Current site
Google Scholar
PubMed
Close
,
Sergio Bonora Dipartimento di Biochimica ‘G. Moruzzi’ Alma Mater Studorium, Università di Bologna, Via Belmeloro 8/2, 40126, Bologna, Italy

Search for other papers by Sergio Bonora in
Current site
Google Scholar
PubMed
Close
, and
Norberto Roveri Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126, Bologna, Italy

Search for other papers by Norberto Roveri in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lactoferrin (LF), a non-heme iron-binding protein of blood plasma and milk with antioxidant, cariostatic, anticarcinogenic, and anti-inflammatory properties, has been studied by differential scanning calorimetry (DSC) and Raman spectroscopy over a wide pH range (4.0–9.0). Using these two techniques, the modifications in the quantity of iron bounded in the cow's milk LF and in the secondary structures, as a function of pH and heating, have been evaluated. DSC curves showed higher value of denaturation temperatures and enthalpy changes when LF was saturated with iron (holo-form) than when it was in its unsaturated form (apo-form). The denaturation curves of the protein solutions at pH ≥ 5.5 confirming that LF is a mix of apo- and holo-forms; on the contrary at pH 4.0, the holo-form is practically absent. Spectroscopic investigation showed that, as a function of pH, the content of α-helix increases up to pH 7.4, followed by a small decrease by further pH increase. The β-sheet percentage exhibits the opposite behavior, while the random-coil and turn structures do not change noticeably. In contrast, after heat-induced denaturation, strong variations were observed in the secondary structure, with an evident increase of β-sheet and decrease of the α-helix percentage. Finally, both thermal and spectroscopic analysis pointed out that the structure of cow's milk LF is strictly sensible to pH variation and it has the highest thermal stability at physiological pH.

  • 1. Metz-Boutique, MH, Jolles, J, Mazurier, J, Schoentgen, F, Legrand, D, Spik, G, Montreuil, J, Jolles, P. Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur J Biochem. 1984 145:659676 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Steijns, JM ACM Van Hooijdonk Occurrence structure biochemical properties and technological characteristics of lactoferrin. Br J Nutr. 2000 84:1117 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Sreedhara, A, Flengsrud, R, Prakash, V, Krowarsch, D, Langsrud, T, Kaul, P, Devold, TG, Vegarud, GE. A comparison of effects of pH on the thermal stability and conformation of caprine and bovine lactoferrin. Int Dairy J. 2010 20:487494 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Jameson, GB, Anderson, BF, Norris, GE, Thomas, DH, Baker, EN. Structure of human apolactoferrin at 2.0 Å resolution. refinement and analysis of ligand-induced conformational change. Acta Crystallogr D Biol Crystallogr. 1998 54:13191335 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Baker, EN, Baker, HM. Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol Life Sci. 2005 62:25312539 .

  • 6. Anderson, BF, Baker, HM, Dodson, EJ, Norris, GE, Rumball, SV, Waters, JM, Baker, EN. Structure of human lactoferrin at 3.2-Å resolution. Proc Natl Acad Sci USA. 1987 84:17691773 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Conesa, C, Sánchez, L, Rota, C, Pérez, MD, Calvo, M, Farnaud, S, Evans, RW. Isolation of lactoferrin from milk of different species: calorimetric and antimicrobial studies. Comp Biochem Physiol Part B. 2008 150:131139 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. González-Chávez, SA, Arévalo-Gallegos, S, Rascón-Cruz, Q. Lactoferrin: structure, function and applications. Int J Antimicrob Agents. 2009 33:301.e1301.e8 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Rüegg, M, Moor, U, Blanc, B. A calorimetric study of the thermal denaturation of whey proteins in simulated milk ultrafiltrate. J Dairy Res. 1977 44:509520 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Sánchez, L, Peiró, JM, Castillo, H, Pérez, MD, Ena, J, Calvo, M. Kinetic parameters for denaturation of bovine milk lactoferrin. J Food Sci. 1992 57:873879 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Torreggiani, A M Di Foggia Manco, I A De Maio Markarian, SA, Bonora, S. Effect of sulfoxides on the thermal denaturation of hen lysozyme: a calorimetric and Raman study. J Mol Struct.. 2008;891:115122 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Wright, DJ Applications of scanning calorimetry to the study of protein behaviour in foods 1982 BJF Hudson eds. Developments in food proteins-1 Applied Science Publishers London, England.

    • Search Google Scholar
    • Export Citation
  • 13. Kawakami, H, Tanaka, M, Tatsumi, K, Dosako, S. Effect of ionic strength and pH on the thermostability of lactoferrin. Int Dairy J. 1992 2:287298 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Privalov, PL. Stability of proteins. Proteins which do not present a single cooperative system. Adv Protein Chem.. 1982;35:1104 .

  • 15. Mata, L, Sánchez, L, Headon, DR, Calvo, M. Thermal denaturation of human lactoferrin and its effect on the ability to bind iron. J Agric Food Chem. 1998 46:39643970 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Anderson, BF, Baker, HM, Norris, GE, Rice, DW, Baker, EN. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 Å resolution. J Mol Biol. 1989 209:711734 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Evans, RW, Williams, J. Studies of the binding of different iron donors to human serum transferrin and isolation of iron-binding fragments from the N- and C-terminal regions of the protein. Biochem J. 1978 173:543552.

    • Search Google Scholar
    • Export Citation
  • 18. Conesa, C, Sanchez, L, Perez, MD, Calvo, M. A calorimetric study of thermal denaturation of recombinant human lactoferrin from rice. J Agric Food Chem. 2007 55:48484853 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Tu A . Peptide backbone conformation and microenvironment of protein side-chains. In: Clark RJ, Hester RE, editors. Spectroscopy of biological systems. vol 13. Chichester: Wiley: (1986). pp. 47112.

    • Search Google Scholar
    • Export Citation
  • 20. Alix, AJP, Pedanou, G, Berjot, M. Fast determination of the quantitative secondary structure of proteins by using some parameters of the Raman Amide I band. J Mol Struct. 1998 174:159164 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Miura, T, Takeuchi, H, Harada, I. Characterization of individual tryptophan side chains in proteins using Raman spectroscopy and hydrogen-deuterium exchange kinetics. Biochemistry. 1998 27:8894 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Miura, T, Takeuchi, H, Harada, I. Tryptophan Raman bands sensitive to hydrogen bonding and side-chain conformation. J Raman Spectrosc. 1989 20:667671 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Ainscough, EW, Brodie, AM, Plowman, JE, Bloor, SJ, Loehr, JS, Loehr, TM. Studies on human lactoferrin by electron paramagnetic resonance, fluorescence, and resonance Raman spectroscopy. Biochemistry. 1980 19:40724079 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Tomimatsu, Y, Kint, S, Scherer, JR. Resonance Raman spectra of iron(III)-, copper(II)-, cobalt(III)-, and manganese(III)-transferrins and of bis(2,4,6-trichlorophenolato)diimidazolecopper(II) monohydrate, a possible model for copper(II) binding to transferrins. Biochemistry. 1976 15:49184924 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 18 0 0
May 2024 24 1 2
Jun 2024 21 0 0
Jul 2024 20 0 0
Aug 2024 33 0 0
Sep 2024 35 0 0
Oct 2024 17 0 0