Authors:
Cornelia Marinescu Institute of Physical Chemistry Ilie Murgulescu of the Romanian Academy, 060021, Bucharest, Romania

Search for other papers by Cornelia Marinescu in
Current site
Google Scholar
PubMed
Close
,
Ancuta Sofronia Institute of Physical Chemistry Ilie Murgulescu of the Romanian Academy, 060021, Bucharest, Romania

Search for other papers by Ancuta Sofronia in
Current site
Google Scholar
PubMed
Close
,
Cristina Rusti National Institute of Research and Development for Non-Ferrous and Rare Metals, 077145, Bucharest, Romania

Search for other papers by Cristina Rusti in
Current site
Google Scholar
PubMed
Close
,
Roxana Piticescu National Institute of Research and Development for Non-Ferrous and Rare Metals, 077145, Bucharest, Romania

Search for other papers by Roxana Piticescu in
Current site
Google Scholar
PubMed
Close
,
Viorel Badilita National Institute of Research and Development for Non-Ferrous and Rare Metals, 077145, Bucharest, Romania

Search for other papers by Viorel Badilita in
Current site
Google Scholar
PubMed
Close
,
Eugeniu Vasile METAV—Research and Development, 020011, Bucharest, Romania

Search for other papers by Eugeniu Vasile in
Current site
Google Scholar
PubMed
Close
,
Radu Baies National Research Institute for Electrochemistry and Condensed Matter, 300224, Timisoara, Romania

Search for other papers by Radu Baies in
Current site
Google Scholar
PubMed
Close
, and
Speranta Tanasescu Institute of Physical Chemistry Ilie Murgulescu of the Romanian Academy, 060021, Bucharest, Romania

Search for other papers by Speranta Tanasescu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The aim of the article is to investigate the influence of particle size on titanium dioxide phase transformations. Nanocrystalline titanium dioxide powder was obtained through a hydrothermal procedure in an aqueous media at high pressure (in the range 25–100 atm) and low temperature (≤200 °C). The as-prepared samples were characterized with respect to their composition by ICP (inductive coupled plasma), structure and morphology by XRD (X-ray diffraction), and TEM (transmission electron microscopy), thermal behavior by TG (thermogravimetry) coupled with DSC (differential scanning calorimetry). Thermal behavior of nanostructured TiO2 was compared with three commercial TiO2 samples. The sequence of brookite–anatase–rutile phase transformation in TiO2 samples was investigated. The heat capacity of anatase and rutile in a large temperature range are reported.

  • 1. Wells, AF Structural inorganic chemistry 1975 4 Clarendon Press Oxford.

  • 2. Dagan, G, Tomkiewicz, M. Titanium dioxide aerogels for photocatalytic decontamination of aquatic environments. J Phys Chem 1993 97:1265112655 .

  • 3. Wei, ZB, Yan, W, Zhang, H, Ren, T, Xin, Q, Li, Z. Hydrodesulfurization activity of NiMo/TiO2#Al2O3 catalysts. Appl Catal A Gen 1998 167:3948 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Zhang, HZ, Banfield, JF. Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 1998 8:20732076 .

  • 5. Gribb, AA, Banfield, JF. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO 2. Am Mineral 1997 82:717728.

    • Search Google Scholar
    • Export Citation
  • 6. Matos, BR, Aricó, EM, Linardi, M, Ferlauto, AS, Santiago, EI et al. 2009 Thermal properties of Nafion–TiO2 composite electrolytes for PEM fuel cell. J Therm Anal Calorim 97 2 591594 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Madarász, J, Brăileanu, A, Crişan, M, Răileanu, M, Pokol, G. Evolved gas analysis of amorphous precursors for S-doped TiO2 by TG-FTIR and TG/DTA-MS. Part 3. Candidate from thiourea and Ti(IV)-ethoxide. J Therm Anal Calorim 2009 97 1 265271 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Crişan, M, Brăileanu, A, Crişan, D, Răileanu, M, Drăgan, N et al. 2008 Thermal behaviour study of some sol-gel TiO2 based materials. J Therm Anal Calorim 92 1 713 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Greenwood Norman, N, Earnshaw, A Chemistry of the elements 1984 Pergamon Oxford.

  • 10. R Riedel I Wei eds. 2010 Ceramics science and technology: properties 2 Wiley-VCH Verlag GmbH & Co. KGaA Weinheim.

  • 11. Heald, EF, Weiss, CW. Kinetics and mechanism of the anatase/rutile transformation, as catalyzed by ferric oxide and reducing conditions. Am Mineral 1972 57:1023.

    • Search Google Scholar
    • Export Citation
  • 12. Wang, Z, Deng, X. Al2O3 composite agent effects on phase transformation of nanometer TiO2 powder. Mater Sci Eng B 2007 140:109113 .

  • 13. Huberty, J, Xu, H. Kinetics study on phase transformation from titania polymorph brookite to rutile. J Solid State Chem 2008 181:508514 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Daβler, A, Feltz, A, Jung, J, Ludwig, W, Kaisersberger, E. Characterization of rutile and anatase powders by thermal analysis. J Therm Anal Calorim 1988 33:803809 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Li, J-G, Ishigaki, T. Brookite → rutile phase transformation of TiO2 studied with monodispersed particles. Acta Mater 2004 52:51435150 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Zhang, HZ, Banfield, JF. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from Tio2. J Phys Chem B 2000 104:34813487 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Ranade, MR, Navrotsky, A, Zhang, HZ, Banfield, HZ, Elder, SH, Zaban, A, Borse, PH, Kulkarni, SK, Doran, GS, Whitfield, HJ. Energetics of nanocrystalline TiO2. Proc Natl Acad Sci USA 2002 99 2 64766481 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Yoganarasimhan, SR, Rao, CNR. Mechanism of crystal structure transformations. Part 3.—factors affecting the anatase-rutile transformation. Trans Faraday Soc 1962 58:15791589 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Shannon, RD, Pask, JA. Kinetics of the anatase-rutile transformation. J Am Ceram Soc 1965 48:391398 .

  • 20. Gennari, FC, Pasquevich, DM. Kinetics of the anatase–rutile transformation in TiO2 in the presence of Fe2O3. J Mater Chem 1998 33:15711578.

    • Search Google Scholar
    • Export Citation
  • 21. Arbiol, J, Cerda, J, Dezanneau, G, Cirera, A, Peiro, F, Cornet, A, Morante, JR. Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J Appl Phys 2002 92:853861 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Burns, A, Hayes, G, Li, W, Hirvonen, J, Demaree, JD, Shah, SI. Neodymium ion dopant effects on the phase transformation in sol–gel derived titania nanostructures. Mater Sci Eng B. 2004 111:150155 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Gallagher PK . Handbook of thermal analysis and calorimetry vol. 5: Recent advances techniques and applications. In: Brown ME, Gallagher Pk, editors; 2008.

    • Search Google Scholar
    • Export Citation
  • 24. Navrotsky, A. Thermochemistry of nanomaterials. Rev Miner Geochem. 2001;44:73103 .

  • 25. Bokhimia, X, Pedrazab, F. Characterization of brookite and a new corundum-like titania phase synthesized under hydrothermal conditions. J Solid State Chem 2004 177:24562463 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Zhang, HZ, Banfield, JF. Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. J Mater Res 2000 15:437448 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Tanaka, K, Iwama, S, Mihama, K. Crystallization of nanometer–sized amorphous sb particles formed by flowing gas evaporation technique. Jpn J Appl Phys 1998 37:L669L671 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Celine Perego , Renaud Revel, Olivier Durupthy, Sophie Cassaignon, Jean-Pierre Jolivet. Thermal stability of TiO2-anatase: impact of nanoparticles morphology on kinetic phase transformation. Solid State Sci. 2010;12: 98995.

    • Search Google Scholar
    • Export Citation
  • 29. Ye, X, Sha, J, Jiao, Z, Zhang, L. Thermoanalytical characteristic of nanocrystalline brookite-based titanium dioxide. NanoStruct Mater 1997 8 7 919927 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Madras, G, McCoy, BJ, Navrotsky, A. Kinetic model for TiO2 polymorphic transformation from anatase to rutile. J Am Ceram Soc 2007 90:250255 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Nakayama, N, Hayashi, T. Preparation of TiO2 nanoparticles surface-modified by both carboxylic acid and amine: Dispersibility and stabilization in organic solvents. Colloids Surf A Physicochem Eng Asp 2008 317:543550 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 36 0 0
Sep 2024 50 0 0
Oct 2024 167 0 0
Nov 2024 52 0 0
Dec 2024 37 0 0
Jan 2025 36 0 0
Feb 2025 0 0 0