View More View Less
  • 1 Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, 00185, Rome, Italy
  • | 2 Department S.B.A.I, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161, Rome, Italy
  • | 3 Department of Chemistry, Illinois State University, Normal, IL, USA
Restricted access

Abstract

Four manganese(II) coordination compounds with bis(1-methylimidazol-2-yl)ketone (BIK) of general formula Mn(BIK)2X2 (X = Cl, Br, NO3, ClO4) were synthesized and characterized by elemental analysis, by UV–vis, and FTIR spectroscopies to be compared with the literature data. Following our previous thermoanalytical studies on imidazole-substituted coordination compounds, the thermal behavior of the synthesized Mn(II) complexes was investigated using TG and DTG techniques: the thermal profile is characterized by three substantial consecutive releasing steps for all the three complexes and the releasing supposed behavior is confirmed by EGA analysis performed by coupling the TG analyzer to an MS spectrometer. In particular, the first step is ascribed to the release of the two anions, followed by the loss of four methyl groups (side chains of the ligand) and two bridge-carbonyl groups. The residual tetra-imidazole manganese compound decomposes in a final step to give MnO as the final residue. Both the initial decomposition temperatures and the kinetic rate constants associated to the first decomposition step indicated a higher stability of the Mn(BIK)2Cl2 complex, the bromide complex being very close to the chloride one (first-step thermal stability: ClO4 <NO3 ≤Br <Cl). Finally, the three-dimensional diffusion reaction model (D3) was selected to describe the first decomposition step for all the four complexes examined.

  • 1. Hage, R, Lienke, A. Applications of transition-metal catalysts to textile and wood-pulp bleaching. Angew Chem Int Ed 2006 45:206222 .

  • 2. Hage, R, Lienke, A. Bleach and oxidation catalysis by manganese-1,4,7-triazacylononane complexes and hydrogen peroxide. J Mol Cat A 2006 251 1–2 150158 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Reinhardt G , Jonas E, Kewitz D, Karadag A, Prehler H (Clariant), EP-B-1445305 (2004).

  • 4. Wu AJ , Penner-Hahn JE, Pecoraro VL. Structural, spectroscopic, and reactivity models for the manganese catalases. Chem Rev. 2004; 104 (2): 90338.

    • Search Google Scholar
    • Export Citation
  • 5. Triller, MU, Hsieh, W-Y, Pecoraro, VL, Rompel, A, Krebs, B. Preparation of highly efficient manganese catalase mimics. Inorg Chem 2002 41 21 55445554 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Triller, MU, Pursche, D, Hsieh, W-Y, Pecoraro, VL, Rompel, A, Krebs, B. Catalytic oxidation of 3,5-di-tert-butylcatechol by a series of mononuclear manganese complexes: synthesis, structure, and kinetic investigation. Inorg Chem 2003 42 20 62746283 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Kloskowski, M, Krebs, B. Synthese und Charakterisierung neuer fünf- und sechsfach koordinierter Mangan(II)-Komplexe als Modellsysteme für manganabhängige Catecholdioxygenasen Z. Anorg. Allg. Chem. 2006 632:771778 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Ban, HT, Kase, T, Murata, M. Manganese-based transition metal complexes as new catalysts for olefin polymerizations. J Polym Sci A 2001 39:37333738 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Vierle, M, Zhang, Y, Herdtweck, E, Bohnenpoll, M, Nuyken, O, Kühn, FE. Highly reactive polyisobutenes prepared with manganese(II) complexes as initiators. Angew Chem Int Ed 2003 42:13071310 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Nabika, M, Seki, Y, Miyatake, T, Ishikawa, Y, Okamoto, K, Fujisawa, K. Manganese catalysis with scorpionate ligands for olefin polymerization. Organometallics 2004 23 19 43354337 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Yliheikkilä, K, Axenov, K, Räisänen, MT, Klinga, M, Lankinen, MP, Kettunen, M, Leskelä, M, Repo, T. Manganese(II) complexes in ethene polymerization. Organometallics 2007 26 4 980987 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Nabika, M, Kiuchi, S, Miyatake, T, Okamoto, K-I, Fujisawa, K. Manganese(II) halogeno complexes with neutral tris(3,5-diisopropyl-1-pyrazolyl)methane ligand: synthesis and ethylene polymerization. J Mol Cat A 2007 269 1–2 163168 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Materazzi, S, Kurdziel, K, Tentolini, U, Bacaloni, A, Aquili, S. Thermal stability and decomposition mechanism of 1-allylimidazole coordination compounds: a TG-FTIR study of Co(II), Ni(II) and Cu(II) hexacoordinate complexes. Thermochim Acta 2003 395 1–2 133137.

    • Search Google Scholar
    • Export Citation
  • 14. Materazzi, S, D'Ascenzo, G, Aquili, S, Kadish, KM, Bear, JL. Thermoanalytical characterization of solid-state Co(II)-, Ni(II)- and Cu(II)-4(5)-aminoimidazole-5(4)-carboxamide complexes. Thermochim Acta 2003 397 1–2 129134 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Materazzi, S, Aquili, S S De Angelis Curtis 2004 Bianchetti, C, D'Ascenzo, G, Kadish, KM, Bear, JL. The decomposition mechanism of new solid-state 4(5)-aminoimidazole-5(4)-carboxamide coordination compounds. Thermochim Acta 409 2 145150 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Materazzi, S, Aquili, S S De Angelis Curtis 2004 Vecchio, S, Kurdziel, K, Sagone, F. Biomimetic complexes: thermal stability, kinetic study and decomposition mechanism of Co(II)-, Ni(II)- and Cu(II)-4(5)-hydroxymethyl-5(4)-methylimidazole complexes. Thermochim Acta 421:1924 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Materazzi, S, Aquili, S, Kurdziel, K, Vecchio, S. Biomimetic polyimidazole complexes: a thermoanalytical study of Co(II)-, NI(II)- and Cu(II)-bis(imidazol-2-yl)methane complexes. Thermochim Acta 2007 457:710 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. S De Angelis Curtis 2008 Kurdziel, K, Materazzi, S, Vecchio, S. Crystal structure and thermoanalytical study of a manganese (II) complex with 1-allylimidazole. J. Therm. Anal. Calorim 92 1 109114 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Materazzi, S, Gentili, A, Curini, R. Application of evolved gas analysis: part 1: EGA by infrared spectroscopy. Talanta 2006 68 3 489496 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Materazzi, S, Vecchio, S. Evolved gas analysis by infrared spectroscopy. Appl Spectr Rev 2010 45 4 241273 .

  • 21. Materazzi, S, Gentili, A, Curini, R. Application of evolved gas analysis: part 2: EGA by mass spectrometry. Talanta 2006 69 4 781794 .

  • 22. Regel E , Büchel K-H. C-acylierung von 5 gliedrigen N-heterocyclen, I. Acylierung an C-2 von imidazolen und benzimidazolen liebigs. Ann Chem. 1977;1: 14558.

    • Search Google Scholar
    • Export Citation
  • 23. Peters, L, Tepedino, M-F, Haas, T, Hübner, E, Zenneck, U, Burzlaff, N. Syntheses and structures of mononuclear manganese(II) complexes bearing bis(1-methylimidazol-2-yl)ketone ligands. Inorg Chim Acta 2009 362 8 26782685 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Flynn JH , Wall LA. A quick direct method for the determination of activation Energy from thermogravimetric data. J Polym Sci B: Polym Lett. 1966; 4 (5): 3238.

    • Search Google Scholar
    • Export Citation
  • 25. Ozawa, T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:18811886 .

  • 26. Doyle, CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6 24 639642 .

  • 27. Vyazovkin, S, Wight, CA. Ammonium dinitramide: kinetics and mechanism of thermal decomposition. J Phys Chem A 1997 101:56535658 .

  • 28. Coats, AW, Redfern, JP. Kinetic parameters from thermogravimetric data. Nature 1964 201:6869 .

  • 29. Vecchio, S, Di Rocco, R, Ferragina, C. Kinetic analysis of the oxidative decomposition in γ-zirconium and γ-titanium phosphate intercalation compounds. The case of 2,2′-bipyridyl and its copper complex formed in situ. Thermochim Acta 2008 467:110 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 1 0 0
Jun 2021 0 0 0
Jul 2021 1 0 0
Aug 2021 2 0 0
Sep 2021 1 0 0
Oct 2021 0 1 0
Nov 2021 0 0 0