View More View Less
  • 1 Colegiado de Pós-Graduação em Ciência dos Materiais, Universidade Federal do Vale do São Francisco, 48902-300, Juazeiro, BA, Brazil
  • | 2 Facultad de Química, Universidad de La Habana, Ciudad Habana CP 10400, Cuba
  • | 3 Laboratórios de Materiais Avançados, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, RJ, Brazil
Restricted access

Abstract

The thermal degradation of an amphiphilic block copolymer poly(ethylene)-b-poly(ethylene oxide)-carboxylic acid terminated (PE-b-80%PEO–CH2COOH) and its salt obtained as intermediary product from chemical oxidation of the end group of poly(ethylene)-b-poly(ethylene oxide) (PE-b-80%PEO) has been studied using a thermogravimetric mass spectrometry (TG/MS) coupled system. The isothermal fragmentation of PE-b-80%PEO–CH2COOH showed a more complex fragmentation pattern than PE-b-80%PEO owing to the simultaneous occurrence of the polyether block and the carboxylic end group fragmentations. This led to the appearance of four overlapping ion current peaks of fragments with m/z 44 and two peaks relative to m/z 18 at different times by acid-terminated copolymer. For the PE-b-80%PEO copolymer, two ion current peaks associated to m/z 44 and one large peak relative to m/z 18 fragments were detected. The intermediary product (PE-b-80%PEO–CH2COO K+) showed differences related to the fragmentation behavior. It has more defined ion current signals and presented characteristic peaks attributed to m/z 43 fragment at the very beginning of the thermal degradation process, which it not detected in the acid copolymer.

  • 1. Kataoka, K, Harada, A, Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001 47:113131 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Gaucher, G, Dufresne, MH, Sant, VP, Kang, N, Maysinger, D, Leroux, JC. Block copolymer micelles: preparation, characterization and application in drug delivery. J Controlled Rel 2005 109:169188 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Rosler, A GWM Vander meulen Klok, HA. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev. 2001;53:95108 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Nagarajan, R, Barry, M, Ruckenstein, E. Unusual selectivity in solubilization by block copolymer micelles. Langmuir 1986 2 2 210215 .

  • 5. Velluto, D, Demurtas, D, Hubbell, JA. PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release: cyclosporin A as an example. Mol Pharm 2008 5 4 632642 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Ternat, C, Kreutzer, G, Plummer, CJG, Christopher, JG, Nguyen, TO, Herrmann, A, Ouali, L, Sommer, H, Fieber, W, Velazco, MI, Klok, HA, Manson, JAE. Amphiphilic multi-arm star-block copolymers for encapsulation of fragrance molecules. Macromol Chem Phys 2007 208 2 131145 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Adams, DJ, Adams, S, Atkins, D, Butler, MF, Furzeland, S. Impact of mechanism of formation on encapsulation in block copolymer vesicles. J Controlled Rel 2008 128:165170 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Tian, Z, Wang, M, Zhang, A, Feng, Z. Preparation and evaluation of novel amphiphilic glycopeptide block copolymers as carriers for controlled drug release. Polymer 2008 49 2 446454 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Qiu, LY, Zhang, JX, Yan, MQ, Jin, Y, Zhu, KJ. Reverse self-assemblies based on amphiphilic polyphosphazenes for encapsulation of water-soluble molecules. Nanotechnology 2007 18 47 475602 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Lin, XN, Zhou, RM, Qiao, Y, Jin, FM, Zhai, YL, Xing, JF, Deng, LD, Dong, AJ. Poly(ethylene glycol)/poly(ethyl cyanoacrylate) amphiphilic triblock copolymer nanoparticles as delivery vehicles for dexamethason. J Polym Sci Part A Polym Chem 2008 46 23 78097815 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Wu, Y, Che, FB, Chen, JH. Synthesis and characterization of a amphiphilic pluronic-poly(d,l-lactide-co-glycolide) copolymer and their nanoparticles as protein delivery systems. J Appl Polym Sci 2008 110 2 11181128 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Chen, L, Jenekhe, SA. Solubilization and encapsulation of fullerenes by amphiphilic block copolymers. Langmuir 1999 15 23 80078017 .

  • 13. Moffitt, M, Khougaz, K, Eisenberg, A. Micellization of ionic block copolymers. Acc Chem Res 1996 29 2 95102 .

  • 14. Lanson, D, Schappacher, M, Borsali, D, Doffieux, A. Poly(styrene)comb-b-poly(ethylene oxide)comb copolymers: synthesis and AFM investigation of intra and supramolecular organization as thin deposits. Macromolecules 2007 40 26 55595565 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Soo, PL, Eisenberg, A. Preparation of block copolymer vesicles in solution. J Polym Sci Part B Polym Phys 2004 42 6 923938 .

  • 16. Wang, D, Peng, Z, Liu, X, Tong, Z, Wang, C, Ben, B. Synthesis and micelle formation of triblock copolymers poly(methylmethacrylate)-b-poly(ethylene oxide)-b-poly (methylmethacrylate) in aqueous solution. Eur Polym J 2007 43 7 27992808 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Hajduk, DA, Kossuth, MB, Hillmyer, MA, Bates, FS. Complex phase behavior in aqueous solutions of poly(ethylene oxide)-poly(ethylene) block copolymers. J Phys Chem B 1998 102:42694276 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Billmeyer, FW Textbook of polymer science 1984 Wiley New York.

  • 19. Ivan B , Kennedy JP, Kelen T, Tüdõs F, Nagy TT, Turcsányi B. Degradation of PVCs obtained by controlled chemical dehydrochlorination. J Polym Sci (Polymer Chemistry Edition). 1983: 217788.

    • Search Google Scholar
    • Export Citation
  • 20. Ivan, B, Turcsányi, B, Kelen, T, Tüdõs, F. Thermooxidative degradation of PVC in solution in the presence of metal stearate stabilizers. Die Angew Makromol Chem 1991 189 1 3549 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Fares, MM, Hacaloglu, J, Suzer, S. Characterization of degradation products of poly(ethylene oxide) by pyrolysis mass-spectroscopy. Eur Polym J 1994 30 7 845850 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Yang, L, Heatley, F, Blease, TG, Thompson, RIG. A study of the mechanism of the oxidative thermic degradation of poly(ethylene oxide) and poly(propylene oxide) using H1 and C13 NMR. Eur Polym J 1996 32 5 535547 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Malik, P, Castro, M, Carrot, C. Thermal degradation during melt processing of poly(ethylene oxide), poly(vinylidene fluoride-co-hexafluro propylene) and their blends in presence of additives for conducting applications. Polym Degrad Stab 2006 91 4 634640 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Zoppi, RA, Duek, EAR, Coraça, DC, Barros, PP. Preparation and characterization of poly(l-lactic acid) and poly(ethylene oxide) blends. Mater Res 2001 4:117125.

    • Search Google Scholar
    • Export Citation
  • 25. Uyar, T, Hacaloglu, J. Thermal degradation of poly(propylene oxide) and polyepichlorohydrin by direct mass spectrometry. J Anal Appl Pyrolysis 2002 64:379393 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Costa, L, Luda, MP, Cameron, GG, Qureshi, MY. The thermal and thermo-oxidative degradation of poly(tetrahydrofuran) and its complexes with LiBr and LiI. Polym Degrad Stab 2000 67:527533 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. McNeill, IC, Sadeghi, SMT. Thermal stability and degradation mechanisms of poly(acrylic acid) and its salts.2. Sodium and potassium salts. Polym Degrad Stab 1990 30 2 213230 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Pielichowski, K, Flejtuch, K. Non-oxidative thermal degradation of poly(ethylene oxide): kinetic and thermoanalytical study. J Anal Appl Pyrolysis 2005 73:131138 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Latimer, RP. Pyrolysis mass spectrometry of acrylic polymers. J Anal Appl Pyrolysis. 2003;68–69:314 .

  • 30. McNeill, IC, Sadeghi, SMT. Thermal stability and degradation mechanisms of poly(acrylic acid) and its salts.1. Poly(acrylic acid). Polym Degrad Stab 1990 29 2 233246 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. McNeill, IC, Alston, A. Thermal degradation behaviour of acrylic salt polymers and ionomers. Die Angew Makromol Chem 1998 261 262 157172.

    • Search Google Scholar
    • Export Citation
  • 32. Hacaloglu, J, Fares, MM, Suzer, S. Pyrolysis mass spectrometric analysis of styrene-isoprene-styrene copolymers. Eur Polym J 1999 35:939944 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Hacaloglu, J, Ersen, T, Ertugrul, N, Fares, MM, Suzer, S. Pyrolysis mass spectrometric analysis of styrene-butadiene block and random copolymers. Eur Polym J 1997 33 2 199203 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Furniss, BS, Hannaford, AJ, Smith, PWG, Tatchell, AR Vogel's textbook of practical organic chemistry 5 Longman London, UK 1989 668.

  • 35. Smith, BC Fourier transform infrared spectroscopy 1996 CRC Press Boca Raton, FL.

  • 36. Berthold, J, Desbrieres, J, Rinaudo, M, Salman, L. Types of adsorption water in relation to the ionic groups and their counter ions for some cellulose derivatives. Polymer 1994 35 26 57295736 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Han, X, Hu, YH, Lin, ZK, Li, SF, Zhao, FQ, Liu, ZR, Yi, JH, Zhang, LY, Ren, XN. Effects of fullerenes on thermal behaviors of polyethylene glycol. J Therm Anal Calorim 2008 93 3 927932 .

    • Crossref
    • Search Google Scholar
    • Export Citation