View More View Less
  • 1 Center of Excellence for Advanced Materials and Processing (CEAMP), School of Materials and Metallurgical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
Restricted access

Abstract

In this research, the effects of Al–5Ti–1B grain refiner and Al–10Sr modifier were studied on solidification characteristics and microstructural features of 319 aluminum alloy. Important solidification events such as recalescence and nucleation undercooling temperature and aluminum–silicon eutectic depression temperature have been evaluated using cooling curve and its first derivative curve obtained from thermal analysis of a sample. The aim of this article is to show the ability of the thermal analysis technique to predict some key parameters controlling solidification and casting process. It has been found that the thermal analysis is the identified method for a rapid on-line monitoring of metallurgical characteristics of aluminum alloy melts without conventional metallographic examination.

  • 1. Gruzleski, JE, Closset, BM The treatment of liquid aluminum–silicon alloys 1990 AFS. Inc. Des Plaines Illinois, USA.

  • 2. Closset, B, Pirie, K, Gruzleski, JE. Comparison of thermal analysis and electrical resistivity in microstructure evaluation of Al–Si foundry alloys. AFS Trans 1984 92:123133.

    • Search Google Scholar
    • Export Citation
  • 3. Yen, CM, Evans, WJ, Nowicki, RM, Cole, GS. Measuring the quality of aluminum casting alloys with microprocessor-aided thermal analysis. AFS Trans 1985 93:199204.

    • Search Google Scholar
    • Export Citation
  • 4. Apelian, D, Sigworth, GK, Whaler, KR. Assessment of grain refinement and modification of Al–Si foundry alloys by thermal analysis. AFS Trans 1984 92:297307.

    • Search Google Scholar
    • Export Citation
  • 5. Charbonnier, J. Microprocessor assisted thermal analysis testing of aluminum alloy structures. AFS Trans. 1984;92:907922.

  • 6. Argyropoulos, S, Closset, B, Gruzleski, JE. Application of microprocessors in metal casting studies. AFS Trans 1983 91:515522.

  • 7. Backerud L , Chai G, Tamminen J. Foundry alloys. In: Solidification characteristics of aluminum alloys, vol 2. Stockholm, Sweden: AFS/Skanaluminium; 1990.

    • Search Google Scholar
    • Export Citation
  • 8. Samuel, AM, Ouellet, P, Samuel, FH, Doty, HW. Microstructural interpretation of thermal analysis of commercial 319 Al alloy with Mg and Sr additions. AFS Trans 1997 105:951962.

    • Search Google Scholar
    • Export Citation
  • 9. Barlow, JO, Stefanescu, DM. Computer-aided cooling curve analysis revisited. AFS Trans 1997 105:349354.

  • 10. Upadhya, KG, Stefanescu, DM, Lieu, K, Yeager, DP. Computer-aided cooling curve analysis: principles and applications in metal casting. AFS Trans 1989 97:6166.

    • Search Google Scholar
    • Export Citation
  • 11. Mackay, RI, Djurdjevic, MB, Sokolowski, JH. Effect of cooling rate on fraction solid of metallurgical reactions in 319 alloy. AFS Trans 2000 108:521530.

    • Search Google Scholar
    • Export Citation
  • 12. Arnberg L , Backerud L, Chai G. Dendrite coherency. In: Solidification characteristics of aluminum alloys, vol 3. Des Plaines, IL: AFS; 1996.

    • Search Google Scholar
    • Export Citation
  • 13. Shabestari, SG, Malekan, M. Thermal analysis study of the effect of cooling rate on the microstructure and solidification parameters of 319 aluminum alloy. Can Met Q 2005 44:305312.

    • Search Google Scholar
    • Export Citation
  • 14. Argyropoulos, S, Closset, B, Gruzleski, JE, Oger, H. The quantitative control of modification in Al–Si foundry alloys using a thermal analysis technique. AFS Trans 1983 91:351358.

    • Search Google Scholar
    • Export Citation
  • 15. Chen, X, Geng, H, Li, Y. Study on the eutectic modification level of Al–7Si alloy by computer aided recognition of thermal analysis cooling curves. Mater Sci Eng A 2006 419:283289 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Mackay, RI, Djurdjevic, MB, Jiang, H, Sokolwski, JH, Evans, WJ. Determination of eutectic Si particle modification via a new thermal analysis interpretive method in 319 alloy. AFS Trans 2000 108:511520.

    • Search Google Scholar
    • Export Citation
  • 17. Shabestari, SG, Ghodrat, S. Thermal analysis and microstructural evaluation of intermetallic compounds formed during pre-and post-eutectic reactions in 319 aluminum alloy. Can Met Q 2005 45:207214.

    • Search Google Scholar
    • Export Citation
  • 18. Shabestari, SG, Ghodrat, S. Assessment of modification and formation of intermetallic compounds in aluminum alloy using thermal analysis. Mater Sci Eng A 2007 467:150158 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Dobrza′nski, LA, Maniara, R, Sokołowski, J, Kasprzak, W. Effect of cooling rate on the solidification behavior of AC AlSi7Cu2 alloy. J Mater Process Technol 2007 191:317320 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Emadi, D, Whiting, LV, Nafisi, S, Ghomashchi, R. Applications of thermal analysis in quality control of solidification processes. J Therm Anal Calorim 2005 81:235242 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Mahfoud, M, Prasada Rao, AK, Emadi, D. The role of thermal analysis in detecting impurity levels during aluminum recycling. J Therm Anal Calorim 2010 100:847851 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Dedavid, BA, Costa, EM, Ferreira, CRF. A study of precipitates formation in AA 380.0 aluminum alloys modified by the addition of magnesium. J Therm Anal Calorim 2002 67:473480 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Djurdjevic, M, Jiang, H, Sokolowski, J. On-line prediction of aluminum–silicon eutectic modification level using thermal analysis. Mater Charact 2001 46:3138 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 10 1 0
May 2021 1 0 0
Jun 2021 9 1 2
Jul 2021 9 0 0
Aug 2021 8 1 0
Sep 2021 4 1 2
Oct 2021 0 0 0