View More View Less
  • 1 Departamento Metalurgia and DEYTEMA, Facultad Regional San Nicolás, Universidad Tecnológica Nacional, Colón 332, B2900LWH, San Nicolás, Argentina
Restricted access

Abstract

Mold fluxes develop important functions during steel continuous casting process. To obtain a free-defect product the melting rate of mold flux is an important property to be controlled. The melting rate depends on the reactivity of carbonaceous material added to these powders as carbon source. In this article, the decomposition kinetic of two carbonaceous materials added to mold flux: petroleum coke and synthetic graphite, was analyzed. By measuring mass loss at different heating rates the decomposition reaction was determined on both types of materials. Applying several kinetic models of non-isothermal decomposition, the average activation energy E = 48 kJ/mol to mold powder with 15 wt% coke and E = 67 kJ/mol to one with 15 wt% graphite was determined. A first order of reaction (n = 1) associated to the decomposition process was assumed to both types of materials. The lower activation energy presented by mold powder-15 wt% petroleum coke indicated a higher reactivity of this material. A higher level of variation of E and n values with decomposition degree and temperature observed in the powder with petroleum coke was associated to a less thermally stable material along with a more complex degradation process.

  • 1. Mills, KC, Fox, AB, Li, Z, Thackray, RP. Performance and properties of mould fluxes. Ironmak Steelmak 2005 32:2634 .

  • 2. Branion, RV. Mold fluxes for continuous casting. Iron Steelmak. 1986;13:4150.

  • 3. Pinheiro, CA, Samarasekera, IV, Brimacombe, JK. Mold flux for continuous casting of steel. Iron Steelmak 1995 22:4344.

  • 4. Mahapatra, RB, Brimacombe, JK, Samarasekera, IV. Mold behavior and its influence on quality in the continuous casting of steel slabs: Part II. Mold heat transfer, formation of oscillation marks, longitudinal off-corner depressions, and subsurface cracks. Mater Trans B 1991 22:875888 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Brandaleze E , Santini L, Gorosurreta C, Benavidez E, Martin A. Influence of carbonaceous particles on the melting behaviour of mold fluxes at high temperature. Proceedings 16th Steelmaking Conference IAS. San Nicolás, Argentina 2007. pp. 36371.

    • Search Google Scholar
    • Export Citation
  • 6. Kawamoto, M, Nakajima, K, Kanazawa, T, Nakai, K. Design principles of mold powder for high speed continuous casting. ISIJ Int 1994 34:593598 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Wei, E, Yang, Y, Feng, C, Sommerville, ID, McLean, A. Effect of carbon properties on melting behavior of mold fluxes for continuous casting of steels. J Iron Steel Res 2006 13:2226 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Chrissafis, K. Kinetics of thermal degradation of polymers. J Therm Anal Calorim. 2009;95:273283 .

  • 9. Sánchez-Jiménez, PE, Criado, JM, Pérez-Maqueda, LA. Kissinger kinetic analysis of data obtained under different heating schedules. J Therm Anal Calorim 2008 94:427432 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Silva, AR, Crespi, MS, Ribeiro, CA, Oliveira, SC, Silva, MRS. Kinetic of thermal decomposition of residues from different kinds of composting. J Therm Anal Calorim 2004 75:401409 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Choudhury, D, Borah, RC, Goswamee, RL, Sharmah, HP, Rao, PG. Non-isothermal thermogravimetric pyrolysis kinetics of waste petroleum refinary sludge by isoconversional approach. J Therm Anal Calorim 2007 89:965970 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Jablonski, AE, Lang, AJ, Vyazovkin, S. Isoconversional kinetics of degradation of polyvinylpyrrolidone used as a matrix for ammonium nitrate stabilization. Thermochim Acta 2008 474:7880 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Rodante, F, Vecchio, S, Tomassetti, M. Multi-step decomposition processes for some antibiotics: a kinetic study. Thermochim Acta 2002 394:718 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Küçük, F, Yildiz, K. The decomposition kinetics of mechanically activated alunite ore in air atmosphere by thermogravimetry. Thermochim Acta 2006 448:107110 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Bernardo da Cruz AG , Wardell JL, Rocco AM. The decomposition kinetics of [Et4N]2[M(dmit)2] (M = Ni, Pd) in a nitrogen atmosphere using thermogravimetry. Thermochim Acta. 2006;443: 21724.

    • Search Google Scholar
    • Export Citation
  • 16. Otero, M, Gómez, X, Garcia, AI, Moran, A. Non-isothermal thermogravimetric analysis of the combustion of two different carbonaceus materials. J Therm Anal Calorim 2008 93:619626 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Goncalves, MLA DA da Pinto Mota Teixeira, AMRF, Teixeira, MAG. Pyrolysis of petroleum fractions. J Therm Anal Calorim. 2008;91:341346 .

  • 18. Vlase, T, Vlase, G, Birta, N, Doca, N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim 2007 88:631635 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. S De Angelis Curtis 2008 Kurdzie, K, Materazzi, S, Vecchio, S. Crystal structure and thermoanalytical study of a manganese(II) complex with 1-allylimidazole. J Therm Anal Calorim 92:109114 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Kropidłowska, A, Rotaru, A, Strankowski, M, Becker, B, Segal, E. Heteroleptic cadmium(II) complex, potential precursor for semiconducting CDS layers. J Therm Anal Calorim 2008 91:903909 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Pielichowski, K, Świerz-Motysia, B. Influence of polyesterurethane plasticizer on the kinetics of poly(vinyl chloride) decomposition process. J Therm Anal Calorim 2006 83:207212 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Boonchom, B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863871 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Vlase, G, Vlase, T, Tudose, R, Costişor, O, Doca, N. Kinetic of decomposition of some complexes under non-isothermal conditions. J Therm Anal Calorim 2007 88:637640 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Santhosh, G, Cheng Tien, RP, Ghee, AH. Thermal decomposition kinetics of ammonium dinitramide–guanylurea dinitramide mixture analyzed by isoconversional methods. Thermochim Acta 2008 480:4348 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Ozawa, T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:18811886 .

  • 26. Flynn, JH, Wall, LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett 1966 4:323328 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Kissinger, HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:17021706 .

  • 28. Akahira, T, Sunose, T. Measurement to decide a factor of thermal life on insulating materials. Rep Chiba Inst Technol 1971 16:2231.

    • Search Google Scholar
    • Export Citation
  • 29. Augis, JA, Bennet, JA. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal 1978 13:283292 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Ozawa, T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150158 .

  • 31. Tonbul, Y, Saydut, A, Yurdakoc, K, Hamamci, C. A kinetic investigation on the pyrolysis of Seguruk asphaltite. J Therm Anal Calorim 2009 95:197202 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Zamalloa, M, Ma, D, Utigard, TA. Oxidation rates of industrial cokes with CO2 and air. ISIJ Int 1995 35:458463 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 1 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0