Authors:
Hongfei Cheng School of Mining Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, QLD, 4001, Australia
School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China

Search for other papers by Hongfei Cheng in
Current site
Google Scholar
PubMed
Close
,
Jing Yang Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, QLD, 4001, Australia

Search for other papers by Jing Yang in
Current site
Google Scholar
PubMed
Close
,
Ray L. Frost Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, QLD, 4001, Australia

Search for other papers by Ray L. Frost in
Current site
Google Scholar
PubMed
Close
,
Qinfu Liu School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China

Search for other papers by Qinfu Liu in
Current site
Google Scholar
PubMed
Close
, and
Zhiliang Zhang School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China

Search for other papers by Zhiliang Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The thermal behavior and decomposition of kaolinite–potassium acetate intercalation complex was investigated through a combination of thermogravimetric analysis and infrared emission spectroscopy. Three main changes were observed at 48, 280, 323, and 460 °C which were attributed to (a) the loss of adsorbed water, (b) loss of the water coordinated to acetate ion in the layer of kaolinite, (c) loss of potassium acetate in the complex, and (d) water through dehydroxylation. It is proposed that the potassium acetate intercalation complex is stability except heating at above 300 °C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the kaolinite intercalation complex when the temperature is raised. The dehydration of the intercalation complex is followed by the loss of intensity of the stretching vibration bands at region 3600–3200 cm−1. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm−1. Dehydration is completed by 400 °C and partial dehydroxylation by 650 °C. The inner hydroxyl group remained until around 700 °C.

  • 1. Franco, F, Pérez-Maqueda, LA, Pérez-Rodríguez, JL 2004 The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite. J Colloid Interface Sci 274:107117 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Zhang, X, Fan, D, Xu, Z 2005 Rapid preparation for kaolinite/dimethyl sulphoxide intercalated complex induced by microwave. J Tongji Univ (Natural Science) 33:16461650.

    • Search Google Scholar
    • Export Citation
  • 3. Franco, F, Cecila, JA, Pérez-Maqueda, LA, Pérez-Rodríguez, JL, Gomes, CSF 2007 Particle-size reduction of dickite by ultrasound treatments: effect on the structure, shape and particle-size distribution. Appl Clay Sci 35:119127 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Gardolinski, JE, Peralta-Zamora, P, Wypych, F 1999 Preparation and characterization of a kaolinite-1-methyl-2-pyrrolidone intercalation compound. J Colloid Interface Sci 211:137141 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Frost, RL, Kristof, J, Kloprogge, JT, Horvath, E 2000 Rehydration of potassium acetate-intercalated kaolinite at 298 K. Langmuir 16:54025408 .

  • 6. Frost, RL, Kristof, J, Horvath, E, Kloprogge, JT 1999 Deintercalation of dimethylsulphoxide intercalated kaolinites—a DTA/TGA and Raman spectroscopic study. Thermochim Acta 327:155166 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Frost, RL, Kristof, J, Horvath, E, Kloprogge, JT 1999 Modification of the kaolinite hydroxyl surfaces through the application of pressure and temperature, Part III. J Colloid Interface Sci 214:380388 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Horváth, E, Kristóf, J, Frost, RL 2010 Vibrational spectroscopy of intercalated kaolinites. Part I. Appl Spectrosc Rev 45:130147 .

  • 9. Gardolinski, JEFC, Lagaly, G 2005 Grafted organic derivatives of kaolinite: I. Synthesis, chemical and rheological characterization. Clay Miner 40:537546 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Zhao S , Wang T, Xu H, Guo Y, Preparation of kaolinite/p-toluene sulfonic acid intercalation compound by melting method. Feijinshukuang 2009;32: 379.

    • Search Google Scholar
    • Export Citation
  • 11. Frost, RL, Kristof, J, Paroz, GN, Tran, TH, Kloprogge, JT 1998 The role of water in the intercalation of kaolinite with potassium acetate. J Colloid Interface Sci 204:227236 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Koji, W Lattice expansion of kaolin minerals by treatment with potassium acetate. Am Miner 1961 46:7891.

  • 13. Anakli, D, Çetinkaya, S 2010 Preparation of poly(2-ethyl aniline)/kaolinite composite materials and investigation of their properties. Curr Appl Phys 10:401406 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Janek, M, Emmerich, K, Heissler, S, Nuesch, R 2007 Thermally induced grafting reactions of ethylene glycol and glycerol intercalates of kaolinite. Chem Mater 19:684693 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Letaief, S, Elbokl, TA, Detellier, C 2006 Reactivity of ionic liquids with kaolinite: melt intersalation of ethyl pyridinium chloride in an urea-kaolinite pre-intercalate. J Colloid Interface Sci 302:254258 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Letaief, S, Detellier, C 2008 Interlayer grafting of glycidol (2, 3-epoxy-1-propanol) on kaolinite. Can J Chem 86:16 .

  • 17. Frost, RL, Bahfenne, S, Graham, J 2008 Infrared and infrared emission spectroscopic study of selected magnesium carbonate minerals containing ferric iron—Implications for the geosequestration of greenhouse gases. Spectrochim Acta A Mol Biomol Spectrosc 71:16101616 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Frost, RL, Kloprogge, JT 1999 Infrared emission spectroscopic study of brucite. Spectrochim Acta A Mol Biomol Spectrosc 55:21952205 .

  • 19. Frost, RL, Weier, ML 2003 Thermal treatment of weddellite—a Raman and infrared emission spectroscopic study. Thermochim Acta 406:221232 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Frost, RL, Cash, GA, Kloprogge, JT 1998 ‘Rocky Mountain leather’, sepiolite and attapulgite—an infrared emission spectroscopic study. Vib Spectrosc 16:173184 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Frost, RL, Wain, D 2008 A thermogravimetric and infrared emission spectroscopic study of alunite. J Therm Anal Calorim 91:267274 .

  • 22. Arizaga, GGC, Gardolinski, JEFDC, Schreiner, WH, Wypych, F 2009 Intercalation of an oxalatooxoniobate complex into layered double hydroxide and layered zinc hydroxide nitrate. J Colloid Interface Sci 330:352358 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Zhang, B, Li, Y, Pan, X, Jia, X, Wang, X 2007 Intercalation of acrylic acid and sodium acrylate into kaolinite and their in situ polymerization. J Phys Chem Solids 68:135142 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Franco, F, Ruiz Cruz, MD 2004 Factors influencing the intercalation degree (‘reactivity’) of kaolin minerals with potassium acetate, formamide, dimethylsulphoxide and hydrazine. Clay Miner 39:193205 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Frost, RL, Kristof, J, Horvath, E, Kloprogge, JT 1999 Modification of kaolinite surfaces through intercalation with potassium acetate, II. J Colloid Interface Sci 214:109117 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Cheng, H, Liu, Q, Yang, J, Zhang, Q, Frost, RL 2010 Thermal behavior and decomposition of kaolinite-potassium acetate intercalation composite. Thermochim Acta 503–504:1620 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Frost, RL, Kristof, J, Horvath, E, Kloprogge, JT 2000 Effect of water on the formamide-intercalation of kaolinite. Spectrochim Acta A Mol Biomol Spectrosc 56:17111729 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Frost, RL, Kristof, J, Mako, E, Horvath, E 2003 A DRIFT spectroscopic study of potassium acetate intercalated mechanochemically activated kaolinite. Spectrochim Acta A Mol Biomol Spectrosc 59:11831194 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Frost, RL, Kristof, J, Paroz, GN, Kloprogge, JT 1998 Role of water in the intercalation of kaolinite with hydrazine. J Colloid Interface Sci 208:216225 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Franco, F, Ruiz Cruz, M 2003 Thermal behaviour of dickite-dimethylsulfoxide intercalation complex. J Therm Anal Calorim 73:151165 .

  • 31. Gorb, LG, Aksenenko, EV, Adams, JW, Larson, SL, Weiss, CA, Leszczynska, D, Leszczynski, J 1998 Computational design of clay minerals: hydration of Mg-exchange cation located in ditrigonal cavity. J Mol Struct 425:129135.

    • Search Google Scholar
    • Export Citation
  • 32. Hess, AC, Saunders, VR 1992 Periodic ab initio Hartree-Fock calculations of the low-symmetry mineral kaolinite. J Phys Chem 96:43674374 .

  • 33. Kristof, J, Frost, RL, Felinger, A, Mink, J 1997 FTIR spectroscopic study of intercalated kaolinite. J Mol Struct 410–411:119122.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 6 0 0
May 2024 7 0 0
Jun 2024 7 1 1
Jul 2024 14 0 0
Aug 2024 18 0 0
Sep 2024 30 0 0
Oct 2024 0 0 0