View More View Less
  • 1 School of Chemical Sciences, Mahatma Gandhi University, P.D. Hills P.O., Kottayam, Kerala, 686 560, India
  • | 2 Institute for Advanced Materials Research, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
Restricted access

Abstract

Detailed investigation on the thermal behaviour of hexaamminenickel(II) chloride and hexaamminenickel(II) bromide has been carried out by means of simultaneous TG/DTA coupled online with mass spectroscopy (TG-MS) and temperature-resolved X-ray diffraction (TR-XRD). Evolved gas analyses by TG-MS revealed the presence of NH2, NH, N2 and H2 fragments in addition to ammonia during the deamination process. These transient species resulted due to the fragmentation of the evolved ammonia during pyrolysis. The intermediates formed during the thermal deamination stages were monitored by in situ TR-XRD. The final product of the decomposition was found to be nano size metallic nickel in both cases. Morphology of the complexes, intermediates and the residue formed at various decomposition stages was analysed by scanning electron microscope (SEM). Kinetic analyses using isoconversional method for deamination and dehalogenation reaction show that the activation energies vary with the extent of conversion, indicating the multi-step nature of these solid state decomposition reactions.

  • 1. Wendlandt, WW, Smith, JP Thermal properties of transition metal amine complexes 1967 Elsevier Amsterdam.

  • 2. Mathew, S, Nair, CGR, Ninan, KN. Thermal decomposition kinetics: kinetics and mechanism of thermal decomposition of bis(ethylenediamine)copper(II) halide monohydrate. Thermochim Acta 1991 181:253268 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Singh, G, Pandey, DK. Studies on energetic compounds: kinetics of thermal decomposition of nitrate complexes of some transition metals with propylenediamine. Combust Flame 2003 135:135143 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Mathew, S, Nair, CGR, Ninan, KN. Thermal decomposition kinetics: kinetics and mechanism of thermal decomposition of tetraamminecopper(II) sulphate monohydrate. Thermochim Acta 1989 144:3343 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Madara'sz, J. Evolved gas analyses on a mixed valence copper(I, II) complex salt with thiosulfate and ammonia by in situ TG-EGA-FTIR and TG/DTA-EGA-MS. J Therm Anal Calorim. 2009;97:111116 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Sanders, JP, Gallagher, PK. Kinetic analysis of complex decomposition reactions using evolved gas analysis. J Therm Anal Calorim 2009 96:805811 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Mathew, S, Eisenreich, N, Engel, W. Thermal analysis using X-ray diffractometry for the investigations of the solid state reaction of ammonium nitrate and copper oxide. Thermochim Acta 1995 269/270:475489 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Nair, PS, Scholes, GD. Thermal decomposition of single source precursors and the shape evolution of CdS and CdSe nanocrystals. J Mater Chem 2006 16:467473 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Navaladian, S, Viswanathan, B, Viswanath, RP, Varadarajan, TK. Thermal decomposition as a route for silver nanoparticles. Nanoscale Res Lett 2007 2:4448 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Li, X, Zhang, X, Li, Z, Qian, Y. Synthesis and characteristics of NiO nanoparticles by thermal decomposition of nickel dimethylglyoximate rods. Solid State Commun 2006 137:581584 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Chen, Y, Peng, D, Lin, D, Luo, X. Preparation and magnetic properties of nickel nano particles via thermal decomposition of nickel organometallic precursors in alkylamine. Nanotechnology 2007 18:505703505708 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Ozawa, T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:18811886 .

  • 13. Flynn, JH, Wall, LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B 1996 4:323328 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Friedman, HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci B. 1969;7:4146 .

  • 15. Kissinger, HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:17021706 .

  • 16. Akahira, T, Sunose, T Research report of Chiba Institute Technology 1971 16:2231.

  • 17. Brauer, G Hand book of preparative inorganic chemistry 1965 2 Academic Press New York.

  • 18. Vogel, AG Text book of quantitative inorganic analysis 1978 4 Longmann London, UK.

  • 19. Badrinarayanan, P, Zheng, W, Simon, SL. Isoconversional analysis of the glass transition. Thermochim Acta 2008 468:8793 .

  • 20. Curtis, SD, Kubiak, M, Kurdziel, K, Materazzi, S, Vecchio, S. Crystal structure and thermoanalytical study of a cadmium(II) complex with 1-allylimidazole. J Anal Appl Pyrolysis 2010 87:175179 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Cai, JM, Bi, LS. Kinetic analysis of wheat straw pyrolysis using isoconversional methods. J Therm Anal Calorim 2009 98:325330 .

  • 22. Su, TT, Zhai, YC, Jiang, H, Gong, H. Studies on the thermal decomposition kinetics and mechanism of ammonium niobium oxalate. J Therm Anal Calorim 2009 98:449455 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Tanaka, N, Kagawa, M, Kamada, M. The thermal decomposition of hexaamminenickel(II) complexes. Bull Chem Soc Jpn 1968 41:29082913 .

  • 24. Madarasz, J, Bombicz, P, Matyas, C, Reti, F, Kiss, G, Pokol, G. Comparative evolved gas analytical and structural study on trans-diammine-bis(nitrito)-palladium(II) and platinum(II) by TG/DTA-MS, TG-FTIR and single crystal X-ray diffraction. Thermochim Acta 2009 490:5159 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Mikuli, AM, Hetmanczyk, J, Mikuli, E, Hetmanczyk, L. Thermal behaviour of polycrystalline [Ba(H2O)3](ClO4)2 and [Ba(NH3)4](ClO4)2. Thermochim Acta 2009 487:4348 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Leineweber, A, Jacobs, H. Preparation and crystal structure of Ni(NH3)2Cl2 and of two modifications of Ni(NH3)2Br2 and Ni(NH3)2I2. J Solid State Chem 2000 152:381387 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Li, C, Shuford, KL, Chen, M, Lee, EJ, Cho, SO. A facile polyol route to uniform gold octahedra with tailarable size and their optical properties. ACS Nano 2008 9:17601769 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Padhi, SK. Solid state kinetics of thermal release of pyridine and morphological study of [Ni(ampy)2(NO3)2]; ampy = 2-picolylamine. Thermochim Acta. 2006;448:16 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Green M , O’Brien P. The preparation of organically functionalized chromium and nickel nanoparticles. Chem Commun. 2001; 19123.

  • 30. Vyazovkin, S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem. 2000;19:4560 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Vyazovkin, S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95101 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Millan, A, Clemente, RR, Veintemillas, S, Spinner, B. Decomposition and synthesis of NiCl2 ammoniate salts: an optical microscopy study. J Chem Soc Faraday Trans 1997 93 18 33633369 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Vyazovkin, S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178183 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 37 0 1
Jul 2021 18 0 1
Aug 2021 19 0 0
Sep 2021 95 0 0
Oct 2021 67 1 3
Nov 2021 27 0 0
Dec 2021 0 0 0