View More View Less
  • 1 Department of Mechanical Engineering, National Chung Hsing University, 40227, Taichung, Taiwan bmboy822@gmail.com
Restricted access

Abstract

In the present study, the MWNT/epoxy composites are prepared with three weight percentages (0.0, 0.3, and 0.5%) of multiwall carbon nanotube (MWNT). The temporal response of multi-wall carbon nanotube (MWNT)/epoxy composite with different wt% of multi-wall carbon nanotube (MWNT) is measured by experiment. Also, a cavity-type measuring system is designed to experimentally measure the surface temperatures and obtain the thermal conductivity of these composites at different heating rates. It is found that the responses of the 0.3 and 0.5% weight percentage of multi-wall carbon nanotube (MWNT)/epoxy composites are found to be about 25 and 47.8%, respectively, faster than that of the pure epoxy resin. Both the responding characteristics and the variation trends of the measured surface temperatures of these composites can be well predicted by the lumped-heat capacity model. Besides, the higher the weight percentage (wt%) of multi-wall carbon nanotube (MWNT) in the composite, the larger is the thermal conductivity. Relative to the pure epoxy, the thermal conductivities for the composites with 0.3 and 0.5% of multi-wall carbon nanotube (MWNT) increase by 15.9 and 44.9%, respectively. For the weight percentages studied, the thermal conductivity of these composites is found to increase mildly at low heating rates; however, it remains nearly constant at high heating rates.

  • 1. Kroto, HW, Heath, JR, O’Brien, SC, Curl, RF, Smalley, RE. C60: Buckministerfullerene. Nature 1985 318:162163 .

  • 2. Iijima, S. Helical microtubules of graphitic carbon. Nature. 1991;354:5658 .

  • 3. Iijima, S, Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993 363:603605 .

  • 4. Yu, M, Lourie, FO, Dyer, M, Moloni, JK, Kelly, TF, Ruoff, RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000 287:637640 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Demczyk, BG, Wang, YM, Cumings, J, Hetman, M, Han, W, Zettl, A, Ritchie, RO. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 2002 334:173178 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Allaoui, S, Bai, H, Cheng, M, Bai, JB. Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 2002 62:19931998 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Gojny, FH, Wichmann, MHG, Fiedler, B, Schulte, K. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—A comparative study. Compos Sci Technol 2005 65:23002313 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Thostenson, ET, Chou, TS. Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 2006 44:30223029 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Wu, F, He, X, Zeng, Y, Cheng, HM. Thermal transport enhancement of multi-walled carbon nanotubes/high density polyethylene composites. Appl Phys A 2006 85:2528 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Hone, J, Whitney, M, Piskoti, C, Zettl, A. Thermal conductivity of single-walled nanotubes. Phys Rev B 1999 59:25142516 .

  • 11. Nan, Z, Wei, C, Yang, Q, Tan, Z. Thermodynamic properties of carbon nanotubes. J Chem Eng Data 2009 54:13671370 .

  • 12. Xu F , Sun LX, Zhang J, Qi YN, Yang LN, Ru HY, Wang CY, Meng X, Lan XF, Jiao QZ, Huang FL. Thermal stability of carbon nanotubes. J Thermal Anal Calorim. 2010; 5. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Zhang K , Xiao GW, Wong KY, Gu HW, Yuen MF, Chan CH, Xu B. Study on thermal interface material with carbon nanotubes and carbon black in high-brightness LED packaging with flip-chip technology. In: Electronic components and technology conference. 2005. p. 6065.

    • Search Google Scholar
    • Export Citation
  • 14. Singh, IV, Tanaka, M, Endo, M. Thermal analysis of CNT-based nano-composites by element free Galerkin method. Comput Mech 2007 39:719728 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Song, YS, Youn, JR. Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element method. Carbon 2006 44:710717 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Abdalla M , Dean D, Theodore M, Fielding J, Nyairo E, Price G. Magnetically processed carbon nanotube/epoxy nanocomposites: morphology, thermal, and mechanical properties. Polymer. 2010;51: 161420.

    • Search Google Scholar
    • Export Citation
  • 17. Gojny, FH, Wichmann, MHG, Fiedler, B, Kinloch, IA, Bauhofer, W, Windle, AH, Schulte, K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 2006 47:20362045 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Cho, S, Kikuchi, K, Miyazaki, T, Takagi, K, Kawasaki, A, Tsukada, T. Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites. Scripta Mater 2010 63:375378 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Karippal JJ , Narashimha Murthy HN, Rai KS, Krishna M, Sreejith M. Electrical and thermal properties of twin-screw extruded multiwalled carbon nanotube/epoxy composites. J Mater Eng Perform. 2010; 17. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Liu, L, Wagner, HD. Rubbery and glassy epoxy resins reinforced with carbon nanotubes. Compos Sci Technol 2005 65:18611868 .

  • 21. Wróbel, G, Rdzawski, Z, Muzia, G, Pawlak, S. Determination of thermal diffusivity of carbon/epoxy composites with different fiber content using transient thermography. J Achiev Mater Manuf Eng 2009 37 2 518525.

    • Search Google Scholar
    • Export Citation
  • 22. Nan, CW, Shi, Z, Lin, Y. A simple model for thermal conductivity of carbon nanotube-based composites. Chem Phys Lett 2003 375:666669 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Xue, QZ. Model for the effective thermal conductivity of carbon nanotube composite. Nanotechnology. 2006;17:16551660 .