View More View Less
  • 1 Semiconductors Technology Lab, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
  • | 2 Basic Engineering Science Department, Faculty of Engineering, Menofia University, Shebin El-Kom, Egypt shehab_mansour@yahoo.com
Restricted access

Abstract

Glassy selenium matrix alloyed with up to 10% indium, namely Se0.95In0.05 and Se0.9In0.1, was prepared by the melt quenching technique. Differential thermal analysis (DTA) has been used to study the glass transition kinetics of the two binary Se–In alloys in comparison with that of pure Se. DTA scans were recorded at different constant heating rates (β = 1:20 °/min). The glass transition temperature (Tg) is found to be shifting to a higher value with increasing of both β and In-content. Such a configurationally response is related to the observed increase of the stability parameters accompanied with the introduction of In into the Se matrix. The activation energy of glass transition (Eg) has been determined using two different non-isothermal models (Moynihan and Kissinger) where a good coincidence is obtained. The compositional dependence (0:10% In) of all considered parameters is discussed in terms of the introduced structural matrix.

  • 1. Mott, NF, Davis, EA 1971 Electronic processes in non-crystalline materials Clarendon Press Oxford.

  • 2. Mott, NF, Davis, EA 1979 Electronic processes in non-crystalline materials Clarendon Press Oxford.

  • 3. Kotkata MF . Transports and structural properties of non-crystalline chalcogenide semiconductors. D.Sc. Thesis, Hungarian Academy of Sciences, Budapest, Hungary; 1993.

    • Search Google Scholar
    • Export Citation
  • 4. Zakery, A, Elliott, SR 2003 Optical properties and applications of chalcogenide glasses: a review. J Non Cryst Solids 330:112 .

  • 5. Lee, ML, Shi, LP, Tain, YT, Gan, CL, Miao, XS 2008 Crystallization behavior of Sb70Te30 and Ag3In5Sb60Te32 chalcogenide materials for optical media applications. Phys Status Solidi A 205:340344 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Kotkata, MF Phase property study of semiconductor selenium: part I. J Mater Sci 1992 27:48474857 .

  • 7. Kotkata, MF Phase property study of semiconductor selenium: part II. J Mater Sci 1992 27:48584870 .

  • 8. El-Hakim, SA, El-Wahab, FA, Mohamed, AS, Kotkata, MF 2003 DC and ac electrical properties of the chalcogenide semiconductor Se0.9In0.1. Phys Status Solidi A 198:128136 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Kotkata, MF, El-Fouly, MH, Fayek, SA 1990 The effect of thallium addition on differential thermal analysis of glassy selenium. J Mater Sci 25:29062916 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Abdel-Aziz, MM 2005 Effect of thallium on the crystallization kinetics of the chalcogenide glasses GeSe2 and GeSe4. J Therm Anal Calorim 79:709714 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Kotkata, MF, El-Fouly, MH, El-Behay, AZ, El-Wahab, LA 1983 Transport studies of S-Se amorphous semiconductors. Mater Sci Eng 60:163171 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Plano, D, Lizarraga, E, Font, M, Palop, JA, sanmartin, C 2009 Thermal stability and decomposition of sulphur and selenium compounds. J Therm Anal Calorim 98:559566 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Kotkata, MF, Mahmoud, EA 1982 Non-isothermal crystallization kinetic studies on amorphous chalcogenide semiconductors. Mater Sci Eng 54:163168 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Kotkata, MF, El-Mously, MK 1983 A survey of amorphous Se–Te semiconductors and their characteristic aspects of crystallization. Acta Phys Hung 54:303312.

    • Search Google Scholar
    • Export Citation
  • 15. Mehta, N, Kumar, A 2007 Comparative analysis of calorimetric studies in Se90M10 (M = In, Te, Sb) chalcogenide glasses. J Therm Anal Calorim 87:343348 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Kotkata, MF, Abdel-Wahab, FA, Al-Kotb, MS 2009 Effect of In-content on the optical properties of a-Se films. Appl Surf Sci 255:90719077 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Micocci, G, Tepore, A, Rella, R, Siciliano, P 1995 Electrical and optical characterization of electron beam evaporated In2Se3 thin films. Phys Status Solidi A 148:431438 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Prix, F, Panella, V, El Monkad, S, Glebov, A, Lacharme, JP, Eddrief, M, Amimer, K, Sebenne, CA, Toennies, JP 1998 Reconstructions upon thermal desorption in ultra high vacuum of InSe covered Si(111) surfaces. Eur Phys J B 5:919926 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Saffarini, G 2000 Differential scanning calorimetry and X-ray photoelectron spectroscopy studies on Se100-xInx system. Phys Status Solidi A 179:109115 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Imran, MMA, Sexena, NS, Bhandari, D, Husain, M 2000 Glass transition phenomena, crystallization kinetic and enthalpy released in binary Se100-xInx (x = 2, 4 and 10) semiconducting glasses. Phys Status Solidi A 181:357368 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Singh, K, Singh, AK, Saxena, NS 2008 Temperature dependence of effective thermal conductivity and effective thermal diffusivity of Se90In10 bulk chalcogenide glass. Curr Appl Phys 8:159162 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Losocka, M The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng 1976 23:173177 .

  • 23. Tichy, L, Ticha, H 1995 Covalent bond approach to the glass-transition temperature of chalcogenide glasses. J Non Cryst Solids 189:141146 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Kotkata, MF, El-Dib, AF 1984 Effect of composition on the electrical and structural characterization of SxTexSe100-2x amorphous alloys. Mater Sci Eng 67:3945 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Abdel-Rahim, MA, El-Korashy, A, Hafiz, MM, Mahmoud, AZ 2008 Kinetic study of non-isothermal crystallization of BixSe100−x chalcogenide glasses. Physica B 403:29562962 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Holubova, J, Cernosek, Z, Cernoskova, E 2009 The selenium based chalcogenide glasses with low content of As and Sb: DSC, StepScan DSC and Raman spectroscopy study. J Non Cryst Solids 355:20502053 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Kumar, H, Mehta, N, Singh, K 2009 Calorimetric studies of glass transition phenomenon in glassy Se80-xTe20Snx alloys. Phys Scr 80 65602 16.

    • Search Google Scholar
    • Export Citation
  • 28. Singh, PK, Dubey, KS 2010 Analysis of thermodynamic behavior of bulk metallic glass forming melts and glass forming ability. J Therm Anal Calorim 100:347353 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Saad, M, Poulain, M 1987 Glass forming ability criterion. Mater Sci Forum 19:1118 .

  • 30. Hruby, A Evaluation of glass-forming tendency by means of DTA. Czech J Phys B 1972 22:11871193 .

  • 31. Thornburg, DD 1974 Evaluation of glass formation tendency from rate dependent thermograms. Mater Res Bull 9:14811486 .

  • 32. Moynihan, CT, Easteal, AJ, Wilder, J, Tucker, J 1974 Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem 78:26732677 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Kissinger, HE 1957 Reaction kinetics in differential thermal analysis. Anal Chem 29:17021706 .

  • 34. Tiwari, RS, Mehta, N, Shukla, RK, Kumar, A 2005 Glass transition kinetics of some Se–Te–Ag chalcogenide glasses. J Therm Anal Calorim 82:4549 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Sharma, A, Barman, PB 2009 Effect of Bi incorporation on the glass transition kinetics of Se85Te15 glassy alloy. J Therm Anal Calorim 96:413417 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Deepika, Rathore KS, Saxena, NS 2010 Kinetics of glass transition and thermal stability of Se58Ge42-xPbx (9 ≤ x ≤ 20) glasses. Appl Phys A 98:441448 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Mahadevan, S, Giridhar, A, Narasimham, PSL, Singh, AK 1984 Dilatometric studies on Ge–Sb–Se glasses. J Non Cryst Solids 65:233240 .

  • 38. Henderson, DW 1979 Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J Non Cryst Solids 30:301315 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Yinnon, H, Uhlmann, DR 1983 Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory. J Non Cryst Solids 54:253275 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Wolny, J, Soltys, J, Kokoszka, R 1987 Constant-heating-rate methods of activation energy determination for crystallization of amorphous Fe–Si–B alloy. J Non Cryst Solids 91:209216 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Avrami, M Kinetics of phase change I. J Chem Phys 1939 7:11031112 .

  • 42. Avrami, M Kinetics of phase change. II transformation‐time relations for random distribution of nuclei. J Chem Phys 1940 8:212224 .

  • 43. Soliman, AA 2007 Derivation of the Kissinger equation for non-isothermal glass transition peaks. J Therm Anal Calorim 89:389392 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 2 0 0
May 2021 0 0 0
Jun 2021 3 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0