View More View Less
  • 1 Centro Atómico Bariloche, CNEA, 8400, San Carlos de Bariloche, Argentina
  • 2 CNEA—Comisión Nacional de Energía Atómica-Argentina, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
  • 3 CONICET—Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
  • 4 CONICET—Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Sur, Bahía Blanca, Argentina
Restricted access

Abstract

This is the first part of a review devoted to present the physicochemical properties of non-stoichiometric oxides that exhibit simultaneously ionic and electronic conductivity. Oxides mixed conductors are candidates to be used in electrochemical applications such as oxygen separation membranes, Solid Oxide Fuel Cells (SOFC) and Solid Oxide Electrolysis Cell (SOEC). In the present article, divide in two parts, we review the thermodynamic and transport properties of mixed conductors systems. In Part I is presented the layered mixed conductors Sr3FeMO6+δ (M = Fe, Co, Ni) belonging to the n = 2 member of the Ruddlesden–Popper series An+1BnO3n+1, while in Part II we discuss results obtained for the Sr1−xLaxFe0.2Co0.8O3−δ perovskites. These perovskite related intergrowth oxides, Sr3FeMO6+δ, intercalate rock-salt layers in the perovskite structure decreasing the tendency of structural transformation at high temperature. The defect structure of these materials has been determined by thermodynamic measurements of the oxygen chemical potential (μO2) as a function of oxygen content and temperature. The knowledge of the defect structure has shown to be essential to analyze electrical resistivity measurements and neutron powder diffraction data at high temperature to propose mechanisms for the electronic and ionic transport.

  • 1. Caneiro, A, Prado, F, Serquis, A. Physical properties of non-stoichiometrics oxides: superconducting oxides. J Therm Anal Calorim 2006 83 2 507518 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Brandon, NP, Skinner, S, Steele, BCH. Recent advances in materials for fuel cells. Annu Rev Mater Res 2003 33:183213 .

  • 3. Kharton, VV, Yaremchenko, AA, Kovalevsky, AV, Viskup, AP, Naumovich, EN, Kerko, PF. Perovskite-type oxides for high-temperature oxygen separation membranes. J Memb Sci 1999 163:307317 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Ghenciu, A. Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr Opin Solid State Mater Sci. 2002;6:389399 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Brisse, A, Schefold, J, Zahid, M. High temperature water electrolysis in solid oxide cells. Int J Hydrog Energy 2008 33:53755382 .

  • 6. Jensen, S, Larsen, P, Mogensen, M. Hydrogen and synthetic fuel production from renewable energy sources. Int J Hydrog Energy 2007 21:32533257 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Larminie, J, Dicks, A Fuel cells systems explained 2003 2 Wiley Chichester.

  • 8. Steel, BCH, Heinzel, A. Materials for fuel-cell technologies. Nature 2001 414:345352 .

  • 9. Song, C. Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century. Catal Today. 2002;77:1749 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. González Arias, A, Torres, C C de Francisco 2006 Muñoz, JM, Hernández Gómez, P, Alejos, O, Montero, O, Iñiguez, JI. Defect concentration in Ti-substituted YIG from TG curves. J Therm Anal Calorim 86 1 195198 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Grzesik, Z, Mrowec, S. Kinetics and thermodynamics of point defects in non-stoichiometric metal oxides and sulphides. J Therm Anal Calorim 2007 90 1 269282 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Malta, LFB, Caffarena, VR, Medeiros, ME, Ogasawara, T. TA of non-stoichiometric ceria obtained via hydrothermal synthesis. J Therm Anal Calorim 2004 75:901910 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Aggarwal, S, Töpfer, J, Tsai, T-L, Dieckmann, R. Point defects and transport in binary and ternary, non-stoichiometric oxide. Solid State Ionics 1997 101–103:321331.

    • Search Google Scholar
    • Export Citation
  • 14. Bishop, SR, Duncan, KL, Wachsman, ED. Defect equilibria and chemical expansion in non-stoichiometric undoped and gadolinium-doped cerium oxide. Electrochim Acta 2009 54 5 14361443 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Hashimoto, T, Yoshinaga, M, Ueda, Y, Komazaki, K, Asaoka, K, Wang, S. Characterization of phase transition of Ba2−xSrxIn2O5 by thermal analysis and high temperature X-ray diffraction. J Therm Anal Calorim 2002 69:909917 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Vashook, VV, Zinkevich, MV, Zonov, YG, Kharton, VV, Tsipis, EV, Yaremchenko, AA, Marozau, IP, Viskup, AP, Frade, JR, Naumovich, EN. Phase relations in oxygen-deficient SrCoO2.5−δ. Solid State Ionics 1999 116 1–2 129138 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Rycerz L , Ingier-Stocka E, Gadzuric S, Gaune-Escard M. Review of the thermodynamic and transport properties of EuBr2-RbBr binary system. J Therm Anal Calorim 2010. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Kumekawa, Y, Hirai, M, Kobayashi, Y, Endoh, S, Oikawa, E, Hashimoto, T. Evaluation of thermodynamic and kinetic stability of CuAlO2 and CuGaO2. J Therm Anal Calorim 2010 99:5763 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Caneiro, A, Bonnat, M, Fouletier, J. Measurement and regulation of oxygen content in selected gases using solid electrolyte cells. IV. Accurate preparation of CO2–CO and H2O–H2 mixtures. J Appl Electrochem 1981 11:8390 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Caneiro, A, Bavdaz, P, Fouletier, J, Abriata, JP. Adaptation of an electrochemical system for measurement and regulation of oxygen partial pressure to a symmetrical thermogravimetric analysis system developed using a Cahn 1000 electrobalance. Rev Sci Instrum 1982 53:10721075 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Ruddlesden, SN, Popper, P. The compound Sr3Ti2O7 and its structure. Acta Cryst 1958 11:5455 .

  • 22. Dann, SE, Weller, MT, Currie, DB. Structure and oxygen stoichiometry in Sr3Fe2O7−y, 0 ≤ y ≤ 1.0. J Solid State Chem 1992 97:179185 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Prado, F, Armstrong, T, Caneiro, A, Manthiram, A. Structural stability and oxygen permeation properties of Sr3−xLaxFe2−yCoyO7−δ (0 ≤ x ≤ 0.3 and 0 ≤ y ≤ 1.0). J Electrochem Soc 2001 148:J7J14 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Armstrong, T, Prado, F, Manthiram, A. Synthesis, crystal chemistry, and oxygen permeation properties of LaSr3Fe3−xCoxO10 (0 ≤ x ≤ 1.5). Solid State Ionics 2001 140:8996 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Manthiram, A, Prado, F, Armstrong, T. Oxygen separation membranes based on intergrowth structures. Solid State Ionics 2002 152–153:647655 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Mogni, L, Fouletier, J, Prado, F, Caneiro, A. High-temperature thermodynamic and transport properties of the Sr3Fe2O6+δ mixed conductor. J Solid State Chem 2005 178:27152723 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Mogni, L, Prado, F, Caneiro, A. Defect structure and electrical conductivity of the Ruddlesden–Popper phases Sr3FeMO6+δ (M = Co, Ni). Chem Mater 2006 18:41634170 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. IUPAC 1987 Commission on thermodynamics, oxygen, international thermodynamic tables of the fluid state—9 Blackwell Scientific Oxford.

    • Search Google Scholar
    • Export Citation
  • 29. Mizusaki, J, Mima, Y, Yamauchi, S, Fueki, K, Tawaga, H. Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ. J Solid State Chem 1989 80:102111 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Patrakeev, MV, Leonidov, IA, Kozhevnikov, VL, Kharton, V. Ion-electron transport in strontium ferrites: relationships with structural features and stability. Solid State Sci 2004 6:907913 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Mizusaki, J, Yoshihiro, M, Yamauchi, S, Fueki, K. Nonstoichiometry and defect structure of the perovskite-type oxides La1−xSrxFeO3−d. J Solid State Chem 1985 58:257266 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Onuma, S, Yashiro, K, Miyoshi, S, Kaimai, A, Matsumoto, H, Nigara, Y, Kawada, T, Mizusaki, J, Kawamura, K, Sakai, N, Yokokawa, H. Oxygen nonstoichiometry of the perovskite-type oxide La1−xCaxCrO3−δ (x = 0.1, 0.2, 0.3). Solid State Ionics 2004 174:287293 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Mizusaki, J, Sasamoto, T, Cannon, WR, Bowen, HK. Electronic conductivity, Seebeck coefficient and defect structure of La1−xSrxFeO3 (x = 0.1, 0.25). J Am Ceram Soc 1983 66:247252 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Lankhorst, MHR, Bouwmeester, HJ, Verweij, H. Use of the rigid band formalism to interpret the relationship between O chemical potential and electron concentration in La1−xSrxCoO3−δ. Phys Rev Lett 1996 77:29892992 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Lankhorst, MHR, Bouwmeester, HJ, Verweij, H. High-temperature coulometric titration of La1−xSrxCoO3−δ: evidence for the effect of electronic band structure on nonstoichiometry behavior. J Solid State Chem 1997 133:555567 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Lankhorst, MHR, Ten Elshof, JE. Thermodynamic quantities and defect structure of La0.6Sr0.4Co1−yFeyO3−δ (y = 0–0.6) from high-temperature coulometric titration experiments. J Solid State Chem 1997 130:302302 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. JAM Van Roosmalen Cordfunke, EHP. A new defect model to describe the oxygen deficiency in perovskite-type oxides. J Solid State Chem. 1991;93:212219 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Kingery, WD, Bowen, HK, Uhlmann, DR Introduction to ceramics 2 Wiley New York 1975.

  • 39. Ashcroft, N, Mermin, N Solid state physics 1976 Saunders College Philadelphia.

  • 40. Raffaelle, R, Anderson, HU, Sparlin, DM, Parris, PE. Transport anomalies in the high-temperature hopping conductivity and thermopower of Sr-doped La(Cr, Mn)O3. Phys Rev B 1991 43 10 79917999 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Mott, NF. Conduction in glasses containing transition metal ions. J Non-Cryst Solid. 1968;1:117 .

  • 42. Mogni, L, Prado, F, Cuello, G, Caneiro, A. Study of the crystal chemistry of the n = 2 Ruddlesden–Popper phases Sr3FeMO6+δ (M = Fe, Co, and Ni) using in situ high temperature neutron powder diffraction. Chem Mater 2009 21:26142623 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Bread, Y, Michel, C, Hervieu, M, Studer, F, Maignan, A, Raveau, B. Large oxygen deficiency in a n = 2 member of the RP series: Sr3FeCoO7−x (x ≤ 1.55). Chem Mater 2002 14:31283135 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Viciu, L, Zandbergen, H, Xu, Q, Huang, Q, Lee, M, Cava, RJ. Structure and magnetic properties of the orthorhombic n = 2 Ruddlesden–Popper phases Sr3Co2O5+δ (δ = 0.91, 0.64 and 0.38). J Solid State Chem 2006 179:500511 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Hill, JM, Dabrowski, B, Mitchell, JF, Jorgensen, JD. Local defect structure of Sr3Co2Ox (5.64 ≤ x ≤ 6.60): evolution of crystallographic and magnetic states. Phys Rev B 2006 74:174417 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Shilova, YA, Patrakeev, MV, Mitberg, EB, Leonidov, IA, Kozhevnikov, VL, Poeppelmeier, KR. Order–disorder enhanced oxygen conductivity and electron transport in Ruddlesden–Popper ferrite-titanate Sr3Fe2−xTixO6+δ. J Solid State Chem 2002 168:275283 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Markov, AA, Patrakeev, MV, Kharton, VV, Pivak, YV, Leonidov, IA, Kozhevnikov, VL. Oxygen nonstoichiometry and ionic conductivity of Sr3Fe2−xScxO7−δ. Chem Mater 2007 19:39803987 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 1 0 0
Nov 2020 0 11 4
Dec 2020 0 0 0
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 1 0 0
Apr 2021 0 0 0