Authors:
Giuseppina Castronuovo Department of Chemistry, University Federico II of Naples, Complesso Universitario Monte S. Angelo, via Cintia, 80126, Naples, Italy

Search for other papers by Giuseppina Castronuovo in
Current site
Google Scholar
PubMed
Close
and
Marcella Niccoli Department of Chemistry, University Federico II of Naples, Complesso Universitario Monte S. Angelo, via Cintia, 80126, Naples, Italy

Search for other papers by Marcella Niccoli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The formation of complexes of parent and alkylated cyclodextrins (CDs) with 1-heptanol and 1-octanol has been studied calorimetrically at 298 K in water and in concentrated aqueous solutions of urea. The forces involved in the association process are discussed in the light of the signs and values of the thermodynamic parameters obtained: association enthalpy, binding constant, Gibbs free energy, and entropy. It was inferred that: (i) in water, the formation of complexes for parent and substituted α-cyclodextrins (αCDs) is determined by enthalpy. For parent and substituted β-cyclodextrins (βCDs), instead, hydrophobic interactions are the prevailing forces determining complexation, as indicated by the small and negative or positive enthalpies and by the high and positive entropies. (ii) In urea, hydrophilic interactions are attenuated. The formation of complexes with alkylated CDs does not occur. (iii) The analysis of the thermodynamic properties confirms that inclusion is a process dominated by hydration phenomena. Modifications experienced by the solvent water in the hydration shells of the interacting substances upon association determine the formation of the complexes.

  • 1. Rekharsky, MV, Inoue, Y 1998 Complexation thermodynamics of cyclodextrins. Chem Rev 98:18751917 .

  • 2. Rekharsky, MV, Inoue, Y 2000 Chiral recognition thermodynamic of β-cyclodextrin: the thermodynamic origin of enantioselectivity and the enthalpy–entropy compensation effect. J Am Chem Soc 122:44184435 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Clarke, RJ, Coates, JH, Lincoln, SF 1988 Inclusion complexes of the cyclomalto–oligosaccharides (cyclodextrins). Adv Carbohydr Chem Biochem 46:205211 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Connors, A The stability of cyclodextrins complexes in solution. Chem Rev 1997 97:13251357 .

  • 5. Bellia, F D La Mendola Pedone, C, Rizzarelli, E, Saviano, M, Vecchio, G 2009 Selectively functionalized cyclodextrins and their metal complexes. Chem Soc Rev 38:27562781 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Zielenkiewicz, W, Terekhova, IV, Wszelaka-Rylic, M, Kumeev, RS 2010 Thermodynamics of inclusion complex formation of hydroxypropylated α- and β-cyclodextrins with aminobenzoic acids in water. J Therm Anal Calorim 101:1523 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Rekharsky, MV, Mayhew, MP, Goldberg, RN, Ross, PD, Yamashoji, Y, Inoue, Y 1997 Thermodynamic and nuclear magnetic resonance study of the reactions of α- and β-cyclodextrin with acids, aliphatic amines, and cyclic alcohols. J Phys Chem 101:87100.

    • Search Google Scholar
    • Export Citation
  • 8. Castronuovo, G, Niccoli, M, Varriale, L 2007 Complexation forces in aqueous solutions. Calorimetric studies of the association of 2-hydroxypropyl-β-cyclodextrin with monocarboxylic acids or cycloalkanols. Tetrahedron 63:70477052 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Ross, PD, Rekharsky, MV 1996 Thermodynamics of hydrogen bond and hydrophobic interactions in cyclodextrins complexes. Biophys J 71:21442154 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Liu, L, Guo, Q-XJ 2002 The driving forces in the inclusion complexation of cyclodextrins. J Inclusion Phenom Macrocycl Chem 42:114 .

  • 11. Liu, L, Guo, Q-XJ 2004 Use of quantum chemical methods to study cyclodextrins chemistry. J Inclusion Phenom Macrocycl Chem 50:95103.

    • Search Google Scholar
    • Export Citation
  • 12. Hallén, D, Schön, A, Shehatta, I, Wadsö, I 1992 Microcalorimetric titration of α-cyclodextrin with some straight-chain alkan-1-ols at 288.15, 298.15, and 308.15 K. J Chem Soc Faraday Trans 88:28532859 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Terechova, IV R De Lisi Lazzara, G, Milioto, S, Muratore, N 2008 Volume and heat capacity studies to evidence interactions between cyclodextrins and nicotinic acids in water. J Therm Anal Calorim 92:285290 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Brewster, MF, Loftsson, T 2007 Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59:645666 .

  • 15. Uekama, K, Hirayama, F, Irie, T 1998 Cyclodextrin drug carrier systems. Chem Rev 98:20452076 .

  • 16. Junquera, E, Ruiz, D, Aicart, E 1999 Role of hydrophobic effect on the noncovalent interactions between salisilic acid and a series of β-cyclodextrins. J Colloid Interface Sci 216:154160 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Todorova, NA, Schwarz, FP 2007 The role of water in the thermodynamics of drug binding to cyclodextrins. J Chem Throdynam 39:10381048 .

  • 18. Aki, A, Ikeda, H, Yukawa, M, Iwase, Y, Mibu, N 2009 Effect of pH on the formation of inclusion complexes between β-lactam antibiotics and 2-hydroxypropyl-β-cyclodextrin in aqueous solution. J Therm Anal Calorim 95:421426 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Zielenkiewicz, W, Terekhova, IV, Marcinowicz, A, Kozbial, M, Poznanski, J 2008 Interactions of native and modified cyclodextrins with some B-vitamins. J Therm Anal Calorim 93:365372 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Zielenkiewicz W , Terekhova IV, Kozbial M, Kumeev RS. Thermodynamic study on inclusion complex formation of riboflavin with 2-hydroxypropyl-β-cyclodextrin in water. J Therm Anal Cal DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Castronuovo, G, Elia, V, Niccoli, M, Velleca, F 2002 The effects of cosolvents on the complexation of α-cyclodextrin with alkylated substances. Calorimetric studies at 25 °C. J Inclusion Phenom Macrocycl Chem 44:229234 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Castronuovo, G, Elia, V, Niccoli, M, Velleca, F, Viscardi, G 1998 Role of the functional group in the formation of the complexes between α-cyclodextrin and alkanols or monocarboxylic acids in aqueous solutions. A calorimetric study at 25 °C. Carbohydr Res 306:147155 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Andini, S, Castronuovo, G, Elia, V, Gallotta, E 1991 Inclusion compounds in water. Calorimetric and spectroscopic studies of the interaction of cyclomaltohexaose (cyclodextrin) with alkanols at 25 °C. Carbohydr Res 217:8797 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Castronuovo, G, Elia, V, Iannone, A, Niccoli, M, Velleca, F 2000 Factors determining the formation of complexes between alpha-cyclodextrin and alkylated substances in aqueous solutions: a calorimetric study at 25 °C. Carbohydr Res 325:278286 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Castronuovo, G, Elia, V, Niccoli, M, Velleca, F 2003 Study of the effects of cosolvents on the complexation of β-cyclodextrin with alkanols by calorimetry at 298 K. J Incl Phenom Macrocycl Chem 45:9197 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Castronuovo, G, Niccoli, M, Velleca, F 2003 Complexation of modified cyclodextrins with hydroxylated substances in aqueous solutions. Calorimetric studies at 298 K. Phys Chem Chem Phys 5:26582662 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Castronuovo, G, Niccoli, M 2005 Complexation of natural and methylated β-cyclodextrins with long chain carboxylic acids in aqueous solutions. Calorimetric studies at 298 K. J Inclusion Phenom Macrocycl Chem 53:6976 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Castronuovo, G, Niccoli, M 2006 Thermodynamics of inclusion complexes of natural and modified cyclodextrins with propranolol in aqueous solution at 298 K. Bioorg Med Chem 14:38833887 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Castronuovo, G, Niccoli, M 2008 The influence of cosolvents on hydrophilic and hydrophobic interactions. Calorimetric studies of parent and alkylated cyclomaltooligosaccharides in concentrated aqueous solutions of ethanol or urea. Carbohydr Res 343:27712775 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Eftink, M, Biltonen, R 1980 Thermodynamics of interacting biological systems AE Beezer eds. Biological microcalorimetry Academic Press London 343412.

    • Search Google Scholar
    • Export Citation
  • 31. Castronuovo, G, Elia, V, Fessas, D, Velleca, F, Viscardi, G 1996 Thermodynamics of the interaction of α-cyclodextrin with monocarboxylic acids in aqueous solutions: a calorimetric study at 25 °C. Carbohydr Res 287:127138 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Castronuovo, G, Niccoli, M 2007 The cavity elongation effect. Calorimetric studies of the complexes of long-chain carboxylic acids with methyl-α-cyclodextrin in aqueous solutions. J Incl Phenom Macrocycl Chem 58:289294 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Lumry, R, Rajender, S 1970 Enthalpy–entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers 9:112512227 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Grunwald, E, Steel, C 1995 Solvent reorganization and thermodynamic enthalpy–entropy compensation. J Am Chem Soc 117:56875692 .

  • 35. Lo Meo, P, D'Anna, F, Gruttadauria, M, Riela, S, Noto, R 2004 Thermodynamics of binding between α- and β-cyclodextrins and some p-nitro-aniline derivatives: reconsidering the enthalpy–entropy compensation effect. Tetrahedron 60:90999111 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Tabushi, I, Kiyosuke, Y, Sugimoto, T, Yamamura, K 1978 Approach to the aspects of driving force of inclusion by α-cyclodextrin. J Am Chem Soc 100:916919 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Inoue, Y, Hakushi, T, Liu, Y, Tong, L, Shen, B, Jin, D 1993 Thermodynamics of molecular recognition by cyclodextrins. 1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with α-, β-, and γ-cyclodextrins: enthalpy–entropy compensation. J Am Chem Soc 115:475481 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Inoue, Y, Liu, Y, Tong, L, Shen, B, Jin, D 1993 Calorimetric titration of inclusion complexation with modified β-cyclodextrins. Enthalpy–entropy compensation in host–guest complexation: from ionophore to cyclodextrin and cyclophane. J Am Chem Soc 115:1063710644 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 4 0 0
Jul 2024 24 0 0
Aug 2024 13 0 0
Sep 2024 24 0 0
Oct 2024 87 0 0
Nov 2024 52 0 0
Dec 2024 2 0 0