View More View Less
  • 1 “Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487, Romania
Restricted access

Abstract

Standard and StepScan DSC studies have been performed on a series of statistical methacrylate copolymers with electron-donor and electron-acceptor pendant groups that form intramolecular electron transfers. From standard DSC analysis we concluded that glass transition temperature slowly increased with increasing electron-acceptor monomeric moiety ratio up to 0.5 in the main chain. Using StepScan DSC method we calculated the size and volume of cooperative rearranging region as well mean temperature fluctuation at glass transition temperature. It was estimated also the average number of monomer units in the cooperative rearranging region. All parameters were calculated according to the method proposed by Donth based on Heat Capacity Spectroscopy. The results show that the presence of intermonomeric electron transfers decreased the chain mobility, as well as the cooperativity of relaxation processes of these structures in the glass transition range. This is reflected by minimal values of these parameters around 0.4 ratio of copolymer composition. Such behavior is similar to that of crosslinked or confined systems (e.g., nanocomposites, thin films) that have reduced chain mobility.

  • 1. Tool, AQ. Relation between inelastic deformability and thermal expansion of glass in its annealing. J Am Chem Soc. 1946;29 9 240253.

    • Search Google Scholar
    • Export Citation
  • 2. Davies, RO, Jones, JO. Thermodynamic and kinetic properties of glasses. Adv Phys Phil Mag Suppl 1953 2 7 370410.

  • 3. DiMarzio, EA, Gibbs, HJ. Nature of the glass transition and the glassy state. J Chem Phys 1958 28 3 373384 .

  • 4. Adam, G, Gibbs, HJ. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 1965 43 1 139147 .

  • 5. Donth, E. Characteristic length of the glass transition. J Polym Sci Part B. 1996;34 17 28812892 .

  • 6. Sillescu, H. Heterogeneity at the glass transition: a review. J Non-Cryst Solids. 1999;243 2–3 81108 .

  • 7. Richert, R. Origin of dispersion in dipolar relaxations of glasses. Chem Phys Lett. 1993;216 1–2 223227 .

  • 8. Schmidt-Rohr, K, Spiess, HW. Nature of nonexponential loss of correlation above the glass transition investigated by multidimensional NMR. Phys Rev Lett 1991 66 23 30203023 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Heuer, A, Wilhelm, M, Zimaurmann, H, Spiess, HW. Rate memory of structural relaxation in glasses and its detection by multidimensional NMR. Phys Rev Lett 1995 75 15 28512854 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Hempel, E, Kahle, S, Unger, R, Donth, E. Systematic calorimetric study of glass transition in the homologous series of poly(n-alkyl methacrylate)s: Narayanaswamy parameters in the crossover region. Thermochim Acta 1999 329 2 97108 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Russel, E, Israeloff, N, Walther, L, Gomariz, A. Nanometer scale dielectric fluctuations at the glass transition. Phys Rev Lett 1998 81 7 14611464 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Arndt, M, Stannarius, R, Groothues, H, Hempel, E, Kremer, E. Length scale of cooperativity in the dynamic glass transition. Phys Rev Lett 1997 79 11 20772080 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Pissis, P, Kritsis, A, Danoakaki, D, Burut, G, Pelster, R, Ninitz, G. Dielectric studies of glass transition in confined propylene glycol. J Phys 1998 10 28 62056228.

    • Search Google Scholar
    • Export Citation
  • 14. Mel'cuk, A, Ramas, R, Gould, H, Klein, W, Mountain, R. Long-lived structures in fragile glass-forming liquids. Phys Rev Lett 1995 75 13 25222525 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Horbach, J, Kob, W, Binder, K, Angell, CA. Finite size effects in simulations of glass dynamics. Phys Rev E 1996 54 6 R5897R5900 .

  • 16. Russel, EV, Israelloff, NE. Direct observation of molecular cooperativity near the glass transition. Nature 2000 408 6813 695 .

  • 17. Robertson, CG, Wang, X. Nanoscale cooperative length of local segmental motion in polybutadiene. Macromolecules 2004 37 11 42664270 .

  • 18. Putz, KW, Palmeri, MJ, Cam, RB, Andrews, R, Brinson, LC. Effect of cross-link density on interphase creation in polymer nanocomposites. Macromolecules 2008 41 18 67526756 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Vyazovkin, S, Dranca, I. A DSC study of α- and β-relaxations in a PS–clay system. J Phys Chem B 2004 108 32 1198111987 .

  • 20. Corcione, CE, Maffezzoli, A. Glass transition in thermosetting clay-nanocomposite polyurethanes. Thermochim Acta 2009 485 1–2 4348 .

  • 21. Hempel, E, Hempel, G, Hensel, A, Shick, C, Donth, E. Characteristic length of dynamic glass transition near Tg for a wide assortment of glass-forming substances. J Phys Chem B 2000 104 11 24602466 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Saiter, A, Delpouve, N, Dargent, E, Saiter, JM. Cooperative rearranging region size determination by temperature modulated DSC in semi-crystalline poly(l-lactide acid). Eur Polym J 2007 43 11 46754682 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Bassi, M, Tonelli, C, DiMeo, A. Glass transition behavior of a microphase segregated polyurethane based on PFPE and IPDI. A calorimetric study. Macromolecules 2003 36 21 80158023 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Saiter, A, Counderc, H, Grenet, J. Characterisation of structural relaxation phenomena in polymeric materials from thermal analysis investigations. J Therm Anal Calorim 2007 88 2 483488 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Hongbing, L, Nutt, S. Restricted relaxation in polymer nanocomposites near the glass transition. Macromolecules 2003 36 11 40104016 .

  • 26. Tuan, TA, Sylvere, S, Grohens, Y. Nanoscale characteristic length at the glass transition in confined syndiotactic poly(methyl methacrylate). Macromolecules 2005 38 9 38673871 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Ellison, CJ, Mundra, MK, Torkelson, JM. Impacts of polystyrene molecular weight and modification to the repeat unit structure on the glass transition–nanoconfinement effect and the cooperativity length scale. Macromolecules 2005 38 5 17671778 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Depoulve, N, Saiter, A, Mano, JF, D'Argent, E. Cooperative rearranging region size in semi-crystalline poly(l-lactic acid). Polymer 2008 49 13–14 31303135.

    • Search Google Scholar
    • Export Citation
  • 29. Lixon, C, Depoulve, N, Saiter, A, D'Argent, E, Grohens, Y. Evidence of cooperative rearranging region size anisotropy for drawn PET. Eur Polym J 2008 44 11 33773384 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Depoulve, N, Nixon, C, Saiter, A, D'Argent, E, Grenet, J. Amorphous phase dynamics at the glass transition in drawn semi-crystalline polyester. J Therm Anal Calorim 2009 97 2 541546 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Quingxiu, L, Simon, SL. Surface chemistry effects on the reactivity and properties of nanoconfined bisphenol M dicyanate ester in controlled pore glass. Macromolecules 2009 42 10 35733579 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Korus, J, Hempel, E, Beiner, M, Kahle, S, Donth, E. Temperature dependence of α glass transition cooperativity. Acta Polym 1997 48 9 369378 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Hempel, E, Hempel, G, Beiner, M, Renner, T, Donth, E. Linearity of heat capacity step near the onset of α glass transition in poly(n-alkylmethacrylate)s. Acta Polym 1996 47 11–12 525529 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Kahle, S, Korus, J, Hempel, E, Unger, R, Höring, S, Schröter, K, Donth, E. Glass-transition cooperativity onset in a series of random copolymers poly(n-butyl methacrylate-stat-styrene). Macromolecules 1997 30 23 72147223 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Lappalainen, M, Pitkäen, I, Heikkila, H, Nurmi, J. Melting behaviour and evolved gas analysis of xylose. J Therm Anal Calorim 2006 84 2 367376 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Cernošek, Z, Holubova, J, Cernoskova, E, Liska, M. Enthalpic relaxation and the glass transition. J Optoelectron Adv Mat 2002 4 3 489503.

    • Search Google Scholar
    • Export Citation
  • 37. Cheromčikova, M, Liška, M. Simple relaxation model of the reversible part of the StepScan® DSC record of glass transition. J Therm Anal Calorim 2006 84 3 703708 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Cassel B , Scotto B, Sichina B. Step Scan DSC: An alternative to the conventional modulated techniques. Perkin Elmer Application Note, Pe-Tech 34.

    • Search Google Scholar
    • Export Citation
  • 39. Merzlyakov, M, Schick, C. Step response analysis in DSC—a fast way to generate heat capacity spectra. Thermochim Acta 2001 380 1 512 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Gunaratue, LMNK, Shanks, RA. Melting and thermal history of poly(hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Thermochim Acta 2005 430 1–2 183190 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Sasaki, T, Yamauchi, N, Irie, S, Sakurai, K. Differential scanning calorimetry study on thermal behaviors of freeze-dried poly(l-lactide) from dilute solutions. J Polym Sci Part B Polym Phys 2005 43 2 115124 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Gunaratue, LMNK, Shanks, RA. Isothermal crystallisation kinetics of poly(3-hydroxybutyrate) using step-scan DSC. J Therm Anal Calorim 2006 83 2 313319 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Gunaratue, LMNK, Shanks, RA, Amarasinghe, G. Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate). Thermochim Acta 2004 423 1–2 127135 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Papageorgiou, GZ, Achilias, DS, Karayannidis, GP, Bikiaris, DN, Roupakias, C, Litsardakis, G. Step-scan TMDSC and high rate DSC study of the multiple melting behavior of poly(1, 3-propylene terephthalate). Eur Polym J 2006 42 2 434445 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Sasaki, T, Uchida, T, Sakurai, K. Effect of crosslink on the characteristic length of glass transition of network polymers. J Polym Sci Part B 2006 44 14 19581966 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Sasaki, T, Misu, M, Shimada, T, Teramoto, M. Glass transition and its characteristic length for thin crosslinked polystyrene shells of rodlike capsules. J Polym Sci Part B 2008 46 19 21162125 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Simionescu, CI, Bacu, E, Grigoras, M, Barboiu, V. Intramolecular charge transfer complexes—25. Copolymers of N-ethyl-3-hydroxymethyl phenothiazinyl acrylate and methacrylate with acryloyl and methacryloyl-β-hydroxyethyl-3,5-dinitrobenzoate. Eur Polym J 1984 20 11 10531056 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48. Hunth, H, Beiner, M, Weyer, S, Merlzyakov, M, Schick, C, Donth, E. Glass transition cooperativity from heat capacity spectroscopy—temperature dependence and experimental uncertainties. Thermochim Acta 2001 377 1–2 113124.

    • Search Google Scholar
    • Export Citation
  • 49. Simionescu, CI, Grigoras, M. Macromolecular donor–acceptor complexes. Prog Polym Sci 1991 16 6 907976 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 1 0 0
Oct 2021 2 0 0
Nov 2021 0 0 0