The application of the Successive Self-nucleation and Annealing (SSA) thermal fractionation technique can yield detailed information of the structural changes induced in linear polyethylene by irradiation. The production of tertiary carbons during the crosslinking reactions can be equivalent to the structural heterogeneity present in branched polyethylenes since in both cases interruption of the linear crystallizable sequences occurs, and these are structural differences that can be easily detected by thermal fractionation. We demonstrate how correlations between melting point and short chain branching content employed for branched polymers can be useful to characterize the distribution of chain heterogeneity produced by crosslinking. As the radiation dose is increased and the crosslinking content also increases, the distribution of chain heterogeneity gets broader as detected by SSA. When the results are coupled with morphological observations made by transmission electron microscopy, valuable information on the morphological changes produced by crosslinking can also be ascertained, since the distribution of lamellar thicknesses substantially broadens with crosslinking. Such a broad distribution can also be predicted from SSA by simple calculations performed employing a modified version of the Gibbs–Thomson equation and is expected on the basis of random crosslinking reactions.
1. Randall, JC, Zoepfl, FJ, Silverman, J. A 13C NMR study of radiation-induced long-chain branching in polyethylene. Die Makromolekulare Chemie Rapid Communications 1983 4:149–157 .
2. Vallés, EM, Failla, MD. The effect of temperature on the tensile mechanical behavior of irradiated linear polyethylene. J Appl Polym Sci 2003 88:1925–1935 .
3. Albano, C, Perera, R, Silva, P, Sánchez, Y. Characterization of gamma irradiated PEs using ESR FTIR and DSC techniques. Polym Bull 2003 51:135–142 .
4. Pérez, CJ, Vallés, EM, Quinzani, LM, Failla, MD. Polyethylenes modified by irradiation and organic peroxide treatment: rheological study. Lat Am Appl Res 2003 33:109–114.
5. Pérez, CJ, Cassano, GA, Vallés, EM, Failla, MD, Quinzani, LM. Rheological study of linear high density polyethylenes modified with organic peroxide. Polymer 2002 43:2711–2720 .
6. Perez, CJ, Cassano, G, Vallés, EM, Quinzani, LM, Failla, MD. Tensile mechanical behavior of linear high-density polyethylenes modified with organic peroxide. Polym Eng Sci 2003 43:1624–1633 .
7. Perez, CJ, Villarreal, N, Pastor, JM, Failla, MD, Valles, EM, Carella, JM. The use of SSA fractionation to detect changes in the molecular structure of model ethylene–butene copolymers modified by peroxide crosslinking. Polym Degrad Stabil 2009 94:1639–1645 .
8. Andersson, LHU, Gustafsson, B, Hjertberg, T. Crosslinking of bimodal polyethylene. Polymer 2004 45:2577–2585 .
9. Bremner, T, Rudin, A. Modification of high density polyethylene by reaction with dicumyl peroxide. Plast Rubber Process Appl 1990 13:61–66.
10. Márquez, L, Rivero, I, Müller, AJ. Application of the SSA calorimetric technique to characterize LLDPE grafted with diethyl maleate. Macromol Chem Phys 1999 200:330–337 .
11. Rojas de Gáscue, B, Méndez, B, Manosalva, JL, López, J, Ruiz Santa Quiteria, V, Müller, AJ. Experimental analysis of the grafting products of diethyl maleate onto linear and branched polyethylenes. Polymer 2002 43:2151–2159 .
12. Smedberg, A, Hjertberg, T, Gustafsson, B. Crosslinking reactions in an unsaturated low density polyethylene. Polymer 1997 38:4127–4138 .
13. Smedberg, A, Hjertberg, T, Gustafsson, B. Effect of molecular structure and topology on network formation in peroxide crosslinked polyethylene. Polymer 2003 44:3395–3405 .
14. Quero, E, Puig, CC, Albano, C, Karam, A. γ-Radiation (0–150 KGy) effects on slow and fast cooled HDPE/LDPE Blends. Polym Bull 2007 59:517–526 .
15. Müller, AJ, Hernández, ZH, Arnal, ML, Sánchez, JJ. Successive self-nucleation/annealing (SSA): a novel technique to study molecular segregation during crystallization. Polym Bull 1997 39:465–472 .
16. Arnal, ML, Balsamo, V, Ronca, G, Sánchez, A, Müller, AJ, Cañizales, E, Urbina de Navarro, C. Applications of successive self-nucleation and annealing (SSA) to polymer characterization. J Thermal Anal Calorim 2000 59:451–470 .
17. Müller, A, Arnal, ML. Thermal fractionation of polymer. Prog Polym Sci 2005 30:559–603 .
18. Lorenzo, AT, Arnal, ML, Müller, AJ, Boschetti de Fierro, A, Abetz, V. High speed SSA thermal fractionation and limitations to the determination of lamellar sizes and their distributions. Macromol Chem Phys 2006 207:39–49 .
19. Müller, AJ, Lorenzo, AT, Arnal, ML. Recent advances and applications of Successive Self-Nucleation and Annealing (SSA) high speed thermal fractionation. Macromol Symp 2009 277:207–214 .
20. Varga, J, Menczel, J, Solti, A. The melting of high-pressure polyethylene subjected to stepwise heat-treatment. J Therm Anal 1979 17:333–342 .
21. Varga, J, Menczel, J, Solti, A. Memory effect of low-density polyethylene crystallized in a stepwise manner. J Therm Anal 1976 10:433–440 .
22. Paolini, Y, Ronca, G, Feijoo, JL, Da Silva, E, Ramírez, J. Müller AJ. Application of the SSA calorimetric technique to characterise an XLPE insulator aged under multiple stresses. Macromol Chem Phys 2001 202:1539–1547 .
23. Fillon, B, Wittmann, JC, Lotz, B, Thierry, A. Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J Polym Sci Polym Phys 1993 31:1383–1393 .
24. Kanig, G. Neue elektronenmikroskopishe untersuchungen über die morphologie von polyathylene. Prog Colloid Polym Sci. 1975;57:176–191 .
25. Puig, CC. The nucleation effect of linear polyethylene lamellae over the crystallization of branched polyethylene. Polym Bull. 1996;36:361–367 .
26. Fatou JG . Morphology and crystallization in polyolefins. In: Vasile C, editor. Handbook of polyolefins. New York: Marcel Dekker Inc. Chapter 8;1993.
27. Zhang, M, Wanke, S. Quantitative determination of short-chain branching content and distribution in commercial polyethylenes by thermally fractionated differential scanning calorimetry. Polym Eng Sci 2003 43:1878–1888 .
28. Hosoda, S. Structural distribution of linear low-density polyethylenes. Polym J. 1988;20:383–397 .
29. Prin, JL, Rojas de Gáscue, B, García, A, Hernández, G, Figuera, W, Vallés, EM, Failla, M, Müller, AJ. Caracterización de la morfología lamelar en un PEAD irradiado y fraccionado térmicamente (SSA) utilizando microscopía electrónica de transmisión. Rev Iberoam Polim 2008 9:322–325.
30. Bassett, DC Principles of polymer morphology 1981 Cambridge University Press Cambridge.
31. Lu, L, Alamo, RG, Mandelkern, L. Lamellar thickness distribution in linear polyethylene and ethylene copolymers. Macromolecules 1994 27:6571–6576 .
32. Mandelkern, L Crystallization of polymers. Equilibrium concepts 2002 1 Cambridge University Press Cambridge .
33. Cho, TY, Heck, B, Strobl, G. Equations describing lamellar structure parameters and melting points of polyethylene-co-(butane/octane)s. Colloid Polym Sci 2004 282:825–832 .