Authors:
Jintao Wan State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China

Search for other papers by Jintao Wan in
Current site
Google Scholar
PubMed
Close
,
Hong Fan State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China

Search for other papers by Hong Fan in
Current site
Google Scholar
PubMed
Close
,
Bo-Geng Li State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China

Search for other papers by Bo-Geng Li in
Current site
Google Scholar
PubMed
Close
,
Cun-Jin Xu State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China

Search for other papers by Cun-Jin Xu in
Current site
Google Scholar
PubMed
Close
, and
Zhi-Yang Bu State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China

Search for other papers by Zhi-Yang Bu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A novel acrylonitrile-capped poly(propylene imine) dendrimer (PAN4) was synthesized and characterized with FTIR and 1H-NMR. PAN4 and its precursor (poly(propylene imine) dendrimer (1.0GPPI) were employed to cure bisphenol A epoxy resin (DGEBA), and the nonisothermal reaction kinetics of DGEBA/PAN4 and DGEBA/1.0GPPI was systematically investigated using a differential scanning calorimeter (DSC) in a comparative way. The apparent activation energies determined with the Kissinger method were 59.7 kJ/mol for DGEBA/1.0GPPI and 53.9 kJ/mol for DGEBA/PAN4. Applied the Málek method, it was found that a two-parameter autocatalytic model (SB(m, n)) could well simulate the reaction rates, and further analysis of the reaction rate constants showed PAN4 could cure DGEBA at a greatly decreased rate by a factor a more than ten compared with 1.0GPPI control.

  • 1. Fraga, F, Soto, VH, Rodríguez-Núñez, E, Martínez-Ageitos, JM, Rodríguez, V. Cure kinetic of the epoxy network diglycidyl ether of bisphenol A (BADGE n = 0)/amantidine. J Therm Anal Calorim 2007 87:97100 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Guo Q , Huang Y, Zhang Y-Y, Zhu L-R, Zhang B-L. Curing behavior of epoxy resins with a series of novel curing agents containing 4,4′-biphenyl and varying methylene units. J Therm Anal Calorim 2010. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Ghaemy M , Behmadi H. Study of cure kinetics of DGEBA with optically active curing agents. J Therm Anal Calorim 2010. doi: .

  • 4. Zhang, D, Jia, D, Chen, S. Kinetics of curing and thermal degradation of hyperbranched epoxy (HTDE)/diglycidyl ether of bisphenol-A epoxy hybrid resin. J Therm Anal Calorim 2009 98:819824 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Villanueva, M, Martín-Iglesias, J, Rodríguez-Añón, J, Proupín-Castiñeiras, J. Thermal study of an epoxy system DGEBA (n = 0)/mXDA modified with POSS. J Therm Anal Calorim 2009 96:575582 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Sharma, P, Choudhary, V, Narula, A. Curing kinetics and thermal stability of diglycidyl ether of bisphenol. J Therm Anal Calorim 2008 91:231236 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Blanco, M, López, M, Fernández, R, Martín, L, Riccardi, C, Mondragon, I. Thermoplastic-modified epoxy resins cured with different functionalities amine mixtures. Kinetics and miscibility study. J Therm Anal Calorim 2009 97:969978 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Fraga, I, Hutchinson, J, Montserrat, S. Vitrification and devitrification during the non-isothermal cure of a thermoset. J Therm Anal Calorim 2010 99:925929 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Wan J , Li B-G, Fan H, Bu Z-Y, Xu C-J. Nonisothermal reaction, thermal stability and dynamic mechanical properties of epoxy system with novel nonlinear multifunctional polyamine hardener. Thermochim Acta 2010. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Wan J , Li B-G, Fan H, Bu Z-Y, Xu C-J. Nonisothermal reaction kinetics of DGEBA with four-armed starlike polyamine with benzene core (MXBDP) as novel curing agent. Thermochim Acta 2010. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Núñez, L, Fraga, L, Núñez, MR, Villanueva, M, Rial, B. TTT cure diagram. J Therm Anal Calorim 2002 70:917 .

  • 12. Vargha, V, Vorster, O, Finta, Z, Csuka, G. TTT Analysis of a powder coating system based on polyester resin and triglycidyl-isocyanurate. J Therm Anal Calorim 2006 83:199206 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. May, CA Epoxy resins chemistry and technology 1988 2 Marcel Dekker Inc New York.

  • 14. Petrie, EM Epoxy adhesive formulations 2006 McGraw-Hill Publishing New York.

  • 15. Foreman, JP, Porter, D, Behzadi, S, Jones, FR. A model for the prediction of structure-property relations in cross-linked polymers. Polymer 2008 128:55885595 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Perrin, FX, Nguyen, TMH, Vernet, JL. Chemico-diffusion kinetics and TTT cure diagrams of DGEBA-DGEBF/amine resins cured with phenol catalysts. Eur Polym J 2007 43:51075120 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Catalani, A, Bonicelli, MG. Kinetics of the curing reaction of a diglycidyl ether of bisphenol A with a modified polyamine. Thermochim Acta 2005 438:126129 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Raj M , Raj L, Shah T, Patel P. Synthesis, characterization of Mannich base oligomers used with epoxy resin for glass fibre-reinforced laminates. J Therm Anal Calorim 2010. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Ellen MMdB-vdB , Meijer EW. Poly(propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem Int Ed Engl 1993;32: 13081311.

    • Search Google Scholar
    • Export Citation
  • 20. Wörner, C, Mülhaupt, R. Polynitrile- and polyamine-functional poly(trimethylene imine) dendrimers. Angew Chem Int Ed Engl 1993 32:13061308 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Barton, JM. The application of differential scanning calorimetry (DSC) to the study of epoxy resin curing reactions. Adv Polym Sci. 1985;72:111154 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Micco, G, Giamberini, M, Amendola, E, Carfagna, C, Astarita, G. Modeling of curing reaction kinetics in liquid-crystalline epoxy resins. Ind Eng Chem Res 1997 36:29762983 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Macan, J, Brnardić, I, Ivanković, M, Mencer, HJ. DSC study of cure kinetics of DGEBA-based epoxy resin with poly(oxypropylene) diamine. J Therm Anal Calorim 2005 91:369373 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Xu, L, Fu, JH, Schlup, JR. In situ near-infrared spectroscopic investigation of epoxy resin-aromatic amine cure mechanisms. J Am Chem Soc 1994 116:28212826 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Málek, J, Criado, JM. Empirical kinetic models in thermal analysis. Thermochim Acta 1992 203:2530 .

  • 26. Málek, J, Sesták, J. Building and statistical interpretation of non-isothermal kinetic mode. Thermochim Acta 1992 203:3142 .

  • 27. Málek, J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257269 .

  • 28. Monserrat, S, Málek, J. A kinetic analysis of the curing reaction of an epoxy resin. Thermochim Acta 1993 228:4760 .

  • 29. Kissinger, HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:17021706 .

  • 30. Chen, HX, Liu, NA. Approximations for the temperature integral. J Therm Anal Calorim 2008 92:573578 .

  • 31. Flynn, JH. The ‘temperature integral’—its use and abuse. Thermochim Acta. 1997;300:8392 .

  • 32. Senum, GI, Yang, RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim 1977 11:445447 .

  • 33. Sbirrazzuoli, N, Girault, Y, Elégant, L. The Málek method in the kinetic study of polymerization by differential scanning calorimetry. Thermochim Acta 1995 249:179187 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Montserrat, S, Flaqué, C, Pagès, P, Málek, J. Effect of the crosslinking degree on curing kinetics of an epoxy-anhydride system. J Appl Polym Sci 1995 56:14131421 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Wang, F, Xiao, J, Wang, J-W, Li, S-Q. A novel imidazole derivative curing agent for epoxy resin: synthesis, characterization, and cure kinetic. J Appl Polym Sci 2007 107:223227.

    • Search Google Scholar
    • Export Citation
  • 36. Montserrat, S, Román, F, Hutchinson, JM, Campos, L. Analysis of the cure of epoxy based layered silicate nanocomposites: reaction kinetics and nanostructure development. J Appl Polym Sci 2008 108:923938 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Yao, L, Deng, J, Qu, B-j, Shi, W-f. Cure Kinetics of DGEBA with hyperbranched poly (3-hydroxyphenyl) phosphate as curing agent studied by non-isothermal DSC. Chem Res Chin Univ 2006 22:118122 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Tripathi, G, Srivastava, D. Cure kinetics of ternary blends of epoxy resins studied by nonisothermal DSC data. J Appl Polym Sci 2009 112:31193126 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Gao, J, Zhang, X, Huo, L, Zhao, H. Curing reaction of o-cresol-formaldehyde epoxy/LC epoxy(p-PEPB)/anhydride(MeTHPA). J Therm Anal Calorim 2010 100:225232 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Rosu, D, Mititelu, A, Cascaval, CN. Cure kinetics of a liquid-crystalline epoxy resin studied by non-isothermal data. Polym Test 2004 23:209215 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Xu, G, Shi, W, Shen, S. Curing kinetics of epoxy resins with hyperbranched polyesters as toughening agents. J Polym Sci B 2004 42:26492656 .

  • 42. Rou, D, Cacaval, CN, Musta, F, Ciobanu, C. Cure kinetics of epoxy resins studied by non-isothermal DSC data. Thermochim Acta 2002 383:119127 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Montserrat, S, Andreu, G, Cortés, P, Calventus, Y, Colomer, P, Hutchinson, JM, Málek, J. Addition of a reactive diluent to a catalyzed epoxy-anhydride system. I. Influence on the cure kinetics. J Appl Polym Sci 1996 61:16631674 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Montserrat, S, Flaqué, C, Calafell, M, Andreu, G, Málek, J. Influence of the accelerator concentration on the curing reaction of an epoxy-anhydride system. Thermochim Acta 1995 269–270:213229 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Yoo, MJ, Kim, SH, Park, SD, Lee, WS, Sun, J-W, Choi, J-H, Nahm, S. Investigation of curing kinetics of various cycloaliphatic epoxy resins using dynamic thermal analysis. Eur Polym J 2010 46:11581162 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Gao, J, Kong, D, Li, S. Nonisothermal cocuring behavior and kinetics of epoxy resin/3-glycidyloxypropyl-POSS with MeTHPA. Polym Compos 2010 31:6067 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Rozenberg, BA. Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines. Adv Polym Sci. 1986;75:113165 .

  • 48. López, J, Rico, M, Montero, B, Díez, J, Ramírez, C. Polymer blends based on an epoxy-amine thermoset and a thermoplastic. J Therm Anal Calorim 2009 95:369376 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49. Odian, G Principles of polymerization 2004 4 Wiley Hoboken, New Jersey .

  • 50. Šesták, J, Berggren, G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta 1971 3:112 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51. Mezzenga, R, Boogh, L, Manson, JAE, Pettersson, B. Effects of the branching architecture on the reactivity of epoxy-amine groups. Macromolecules 2000 33:43734379 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 13 0 0
Jul 2024 28 0 0
Aug 2024 15 0 0
Sep 2024 35 0 0
Oct 2024 103 0 0
Nov 2024 47 0 0
Dec 2024 0 0 0