View More View Less
  • 1 Department of Polymer Technology, Kamaraj College of Engineering and Technology, S.P.G.C. Nagar, K. Vellakulam Post, Virudhunagar 625701, India
  • | 2 Defence Materials and Stores Research and Development Establishment (DMSRDE), G.T. Road, Kanpur 208013, India
Restricted access

Abstract

The compound 2,2-bis[4-(4-maleimidophenoxy phenyl)]propane was prepared by the imidization of bisamic acid of 2,2-bis(4-aminophenoxy phenyl)propane. Various nanoclays were blended with this bismaleimide and thermally cured. The structural characterization of the synthesized materials and the thermal properties of the bismaleimide and their blends were investigated through FTIR, 1H and 13C NMR, differential scanning calorimetry and thermo gravimetric analysis. Among the various clays investigated, Cloisite 15A shows strong influence on the cure exotherm of bismaleimide. Introduction of clay mineral into bismaleimide shifts the onset of curing exotherm to higher temperature and is nearly 40 °C. The thermal stability of the clay loaded cured bismaleimide increases and the presence of clay particles in the cured bismaleimide matrix enhances the char formation.

  • 1. Zhao, L, Li, L, Tian, JX, Zhuang, J, Li, S. Synthesis and characterization of bismaleimide-polyetherimide titania hybrid. Composites Part A 2004 35:12171224 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Nah, C, Han, SH, Lee, J, Lee, M, Lim, SD, Rhee, JM. Intercalation behavior of polyimide/organoclay nanocomposites during thermal imidization. Composites Part B 2004 35:125131 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Ghose, S, Watson, KA, Cano, RJ, Britton, SM, Jensen, BJ, Connell, JW, Herring, HM, Lineberry, QJ. High temperature VARTM of phenylethynyl terminated imides. High Perform Polym 2009 21:653672 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Liu, X, Yu, YF, Li, S. Study on cure reaction of the blends of bismaleimide and dicyanate ester. Polymer 2006 47:37673773 .

  • 5. Wu, CS, Liu, YL, Chiu, Y. Synthesis and characterization of new organosoluble polyaspartimides containing phosphorus. Polymer 2002 43:17731779 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Tang, H, Song, N, Gao, Z, Chen, X, Fan, X, Xiang, Q, Zhou, Q. Synthesis and properties of 1,3,4-oxadiazole containing high-performance bismaleimide resins. Polymer 2007 48:129138 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Costache, C, Heidecken, MJ, Manias, E, Wilkie, CA. Preparation and characterization of poly(ethylene-terephthalate)/clay nano composites by melt blending using thermally stable surfactants. Polym Adv Technol 2006 17:764771 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Meng, J, Hu, X. Synthesis and exfoliation of bismaleimide-organoclay nanocomposite. Polymer 2007 45:90119018 .

  • 9. Chen, TK, Tien, YI, Wei, KH. Synthesis and characterization of novel segmented polyurethane/clay nano composites. Polymer 2000 41:13451353 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Gupta, RK, Bhattacharya, SN. Polymer-clay nanocomposites: current status and challenges. Indian Chem Eng 2008 50:242267.

  • 11. Pelia, R, Seferis, JC, Karaki, T, Parker, G. Effects of nanoclay on the thermal and rheological properties of a VARTM (vacuum assisted resin transfer molding) epoxy resin. J Therm Anal Calorim 2009 96:587592 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Leszczynska, A, Pielichowski, K. Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposites. J Therm Anal Calorim 2008 93:677687 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Lee, LJ, Zeng, C, Cao, X, Han, X, Shen, J, Yu, G. Polymer nanocomposite foams. Compos Sci Technol 2005 65:23442363 .

  • 14. Pelia, R, Lengvinate, S, Malucelli, G, Priola, A, Ronchetti, S. Modified organophilic montmorillonites/LDPE nanocomposites preparation and thermal characterization. J Therm Anal Calorim 2008 91:107111 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Gintert, MJ, Jana, SC, Miller, SG. A novel strategy for nanoclay exfoliation in thermoset PMR-type polyimide-clay nanocomposites. Polymer 2007 48:41664173 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Priya, L, Jog, JP. Polymorphism in intercalated poly(vinylidene fluoride)/clay nanocomposites. J Appl Polym Sci 2003 89:20362040 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)