View More View Less
  • 1 AEWC-Advanced Structures and Composites Center, University of Maine, Orono, ME, USA hanseung.yang@maine.edu
  • | 2 Forest Bioproducts Research Institute (FBRI), University of Maine, Orono, ME, 04469-5793, USA
Restricted access

Abstract

Microcrystalline cellulose-filled polypropylene (PP) composites and cellulose nanofiber-filled composites were prepared by melt blending. The compounded material was used to evaluate dispersion of cellulose fillers in the polypropylene matrix. Thermogravimetric analysis (TG) and mechanical testing were conducted on composites blended multiple times and the results were compared with single batch melt blended composites. The residual mass, tensile strength, and coefficient of variance values were used to evaluate dispersion of the microcrystalline cellulose fillers in the PP matrix. The potential of using TG to evaluate cellulose nanofiber-filled thermoplastic polymers was also investigated and it was found that the value and variability of residual mass after TG measurements can be a criterion for describing filler dispersion. A probabilistic approach is presented to evaluate the residual mass and tensile strength distribution, and the correlation between those two properties. Both the multiple melt blending and single batch composites manufactured with increased blending times showed improved filler dispersion in terms of variation and reliability of mechanical properties. The relationship between cellulose nanofiber loading and residual mass was in good agreement with the rule of mixtures. In this article, the authors propose to use a novel method for dispersion evaluation of natural fillers in a polymer matrix using TG residual mass analysis. This method can be used along with other techniques such as scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD) for filler dispersion evaluation in thermoplastic composites.

  • 1. Siro, I, Plackett., D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 2010 17 3 459494 .

  • 2. Eichhorn, SJ, Dufresne, A, Aranguren, M, Marcovich, NE, Capadona, JR, Rowan, SJ, Weder, C, Thielemans, W, Roman, M, Renneckar, S, Gindl, W, Veigel, S, Keckes, J, Yano, H, Abe, K, Nogi, M, Nakagaito, AN, Mangalam, A, Simonsen, J, Benight, AS, Bismarck, A, Berglund, LA, Peijs, T. Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 2010 45 1 133 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Mathew, AP, Oksman, K, Sain, M. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 2005 97 5 20142025 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Petersson, L, Oksman, K. Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 2006 66 13 21872196 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Kumar, AP, Singh, RP. Novel hybrid of clay, cellulose, and thermoplastics. I. Preparation and characterization of composites of ethylene–propylene copolymer. J Appl Polym Sci 2007 104 4 26722682 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Gu, R, Kokta, BV. Effect of independent variables on mechanical properties and maximization of aspen–polypropylene composites. J Thermoplast Compos Mater 2008 21 1 2750 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Yang, HS, Gardner, DJ, Kim, HJ. Viscoelastic and thermal analysis of lignocellulosic material filled polypropylene bio-composites. J Therm Anal Calorim 2009 98 2 553558 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Mi, Y, Chen, X, Guo, Q. Bamboo fiber-reinforced polypropylene composites: crystallization and interfacial morphology. J Appl Polym Sci 1997 64 7 12671273 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Zugenmaier, P. Materials of cellulose derivatives and fiber-reinforced cellulose–polypropylene composites: characterization and application. Pure Appl Chem. 2006;78 10 18431855 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Alemdar, A, Sain, M. Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 2008 68 2 557565 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Lee, SY, Yang, HS, Kim, HJ, Jeong, CS, Lim, BS, Lee, JN. Creep behavior and manufacturing parameters of wood flour filled polypropylene composites. Compos Struct 2004 65 3–4 459469 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Yang, HS, Kim, HJ, Son, J, Park, HJ, Lee, BJ, Hwang, TS. Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct 2004 63 3–4 305312 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Yang, HS, Wolcott, MP, Kim, HS, Kim, HJ. Thermal properties of lignocellulosic filler-thermoplastic polymer bio-composites. J Therm Anal Calorim 2005 82 1 157160 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Yang, HS, Kim, HJ, Park, HJ, Lee, BJ, Hwang, TS. Water absorption behavior and mechanical properties of lignocellulosic filler-polyolefin bio-composites. Compos Struct 2006 72 4 429437 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Yang, HS, Wolcott, MP, Kim, HS, Kim, S, Kim, HJ. Properties of lignocellulosic material filled polypropylene bio-composites made with different manufacturing processes. Polym Testing 2006 25 5 668676 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Yang, HS, Kim, HJ, Park, HJ, Lee, BJ, Hwang, TS. Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos Struct 2007 77 1 4555 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Jana, SC, Jain, S. Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids. Polymer 2001 42 16 68976905 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Manias, E, Touny, A, Wu, L, Strawhecker, K, Lu, B, Chung, TC. Polypropylene/montmorillonite nanocomposites. review of the synthetic routes and materials properties. Chem Mater 2001 13 10 35163523 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Sakin, R, Ay, I. Statistical analysis of bending fatigue life data using Weibull distribution in glass-fiber reinforced polyester composites. Mater Des 2008 29 6 11701181 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Tanimoto, T, Amijima, S, Matsuoka, T Fatigue life estimation of laminated GRP materials under various random load patterns ICCM-V San Diego 1985 199210.

    • Search Google Scholar
    • Export Citation
  • 21. Long MW , Narciso JD. Probabilistic design methodology for composite aircraft structures national technical information service. 1999. Springfield, Virginia, 22161. http://aar400.tc.faa.gov/acc/accompdocs/99-2.pdf.

    • Search Google Scholar
    • Export Citation
  • 22. Khashaba, UA. Fatigue and reliability analysis of unidirectional GFRP composites under rotating bending loads. J Compos Mater. 2003;37 4 317331 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Tanimoto T , Amijima S, Ishikawa H. A reliability analysis approach to fatigue life dispersion of laminated glass fiber composite materials. In: ICM 3, Vol. 3, Cambridge, England; 1979. p. 20716.

    • Search Google Scholar
    • Export Citation
  • 24. Qiao, P, Yang, M. Fatigue life prediction of pultruded E-glass/polyurethane composites. J Compos Mater 2006 40 9 815837 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 4 1 1
Mar 2021 2 0 0
Apr 2021 3 0 0
May 2021 4 0 0
Jun 2021 4 1 0
Jul 2021 3 0 0
Aug 2021 0 0 0