View More View Less
  • 1 Center for Organic Electronics and Polymers, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
Restricted access

Abstract

The non-isothermal crystallization kinetics and thermal stability of the in situ reinforcing composite thin film, comprising of 10 wt% of thermotropic liquid crystalline polymer (TLCP, Rodrun LC5000) and polypropylene (PP), prepared by a two-step method were investigated using differential scanning calorimetry (DSC) and thermogravimetry (TG), respectively. The DSC results revealed that Mo method was suitable for the crystallization behavior description of both neat PP and 10 wt%TLCP/PP films. The in situ formation of TLCP fibrils in the PP matrix led to reduction in both values of half-time of crystallization (t1/2) and the kinetic parameter of Mo equation F(T), resulting in a significant increase in the crystallization rate of PP phase. The remarkable lower in crystallization activation energy of the composite films also confirmed that in situ formed TLCP fibrils could influence the molecular chain of PP easier to crystallize, and hence resulted in the faster crystallization rate. The nucleation activity value of composite indicated that TLCP fibrils acted as effective nucleating agents. From TG results and the higher decomposition activation energy, the thermal stability of the composite can be improved by the presence of in situ-formed TLCP fibrils.

  • 1. Handlos, AA, Baird, DGB. Processing and associated of in situ composites based on thermotropic liquid crystalline polymers and thermoplastics. JMS Rev Macromol Chem Phys 1995 C35 2 183238.

    • Search Google Scholar
    • Export Citation
  • 2. Jin, X, Li, W. Correlation of mechanical properties with morphology, rheology, and processing parameters for TLCP containing blends. JMS Rev Macromol Chem Phys 1995 35 1 113.

    • Search Google Scholar
    • Export Citation
  • 3. Tjong, SC. Structure, morphology, mechanical and thermal characteristics of the in situ composites based on liquid crystalline polymers and thermoplastics. Mater Sci Eng Rep. 2003;41:160 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Dutta, D, Fruitwala, H, Kohli, A, Wiess, RA. Polymer blends containing liquid crystals and thermoplastics. Polym Eng Sci 1990 30:10051018 .

  • 5. Qin, Y, Brydon, DL, Mather, RR, Wardman, RH. Fibers from polypropylene and liquid crystalline blends: 3. A comparison of polyblend fibers containing Vectra A900, Vectra B950 and Rodrun LC3000. Polymer 1993 34:35973604 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Saengsuwan, S, Bualek-Limcharoen, S, Mittchell, GR, Olley, RH. Thermotropic liquid crystalline polymer (Rodrun LC5000)/polypropylene in situ composite films: rheology, molecular orientation and tensile properties. Polymer 2003 44:34073415 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Kiss, G. In situ composites: blends of isotropic polymers and thermotropic liquid crystalline polymers. Polym Eng Sci. 1987;27 6 410423 .

  • 8. Blizard, KG, Baird, DG. The morphology and rheology of polymer blends containing a liquid crystalline copolyester. Polym Eng Sci 1987 27:653662 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Wu, S. Formation of dispersed phase in incompatible polymer blends: Interfacial and rheological effects. Polym Eng Sci. 1987;27 5 335343 .

  • 10. Heino, MT, Vainio, TP 1996 NP Cheremisinoff PN Cheremisinoff eds. Effect of viscosity ratio and processing conditions on the morphology of blends of liquid crystalline polymer and polypropylene. Handbook of applied polymer processing technology Marcel Dekker, Inc. New York.

    • Search Google Scholar
    • Export Citation
  • 11. Xu, QW, Man, HC, Lau, WS. The effect of a third component on the morphology and mechanical properties of liquid-crystalline polymer and polypropylene in situ composites. Comp Sci Technol 1999 59:291296 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Xu, W, Ge, M, He, P. Non-isothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites. J Appl Polym Sci B 2002 40:408414 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Papageorgiou, GZ, Achilias, DS, Bikiaris, DN, Karayannidis, GP. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites. Thermo Acta 2005 427:117128 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Jain, S, Goossens, H, Dulin, MV, Lemstra, P. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polymer 2005 46:88058818.

    • Search Google Scholar
    • Export Citation
  • 15. Varga J . In: Karger-Kocsis J, editor. Polypropylene: structure, blends and composites, vol 1, chap 3. London: Chapman and Hall; 1995.

    • Search Google Scholar
    • Export Citation
  • 16. Friedrich, K, Evstatiev, M, Fakirov, S, Evstatiev, O, Ishii, M, Harrass, M. Microfibrillar reinforced composites from PET/PP blends: Processing, morphology and mechanical properties. Comp Sci Technol 2005 65 1 107116 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Zhang, H, Zhang, Q, Sun, C. Nonisothermal crystallization kinetics of polypropylene/polyethersulfone blend. Polym Bull 2008 60:291300 .

  • 18. Sukananta, P, Bualek-Limcharoen, S. In situ modulus enhancement of polypropylene monofilament through blending with liquid-crystalline copolyester. J Appl Polym Sci 2003 90:13371346 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Minkova, LI, Paci, M, Pracella, M, Magagnini, P. Crystallization behavior of polyphenylene sulfide in blends with a liquid crystalline polymer. Polym Eng Sci 1992 32:5764 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Yan, H, Xu, J, Mai, K, Zeng, H. Crystallization of poly(butylene terephthalate) blends containing liquid crystalline polymer component. Polymer 1999 40:48654875 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Gopakumar, TG, Ghadage, RS, Ponrathnam, S, Rajan, CR, Fradet, A. Poly(phenylene sulfide)/liquid crystalline polymer blends: 1. Non-isothermal crystallization kinetics. Polymer 1997 38 9 22092214 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Minkova, L, Magagnini, PL. Blends of poly(ethylene 2,6-naphthalate) with liquid-crystalline polymers: crystallization behavior and morphology. Polymer 2001 42 13 56075613 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Pracella, M, Dainelli, D, Galli, G, Chiellini, E. Polymer blends based on mesomorphic components, 1. Properties of poly(tetramethylene terepthanate)/poly(decamethylene 4,4-terepthaloyldixydibenzoate) blends. Makromol Chem 1986 187:23872400 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Carvalho, B, Bretas, ERS. Crystallization kinetics of a PEEK/LCP blend. J Appl Polym Sci 1994 55 2 233246 .

  • 25. Torre, FJ, Cortazar, MM, Gomez, MA, Ellis, G, Marco, C. Isothermal crystallization of iPP/Vectra blends by DSC and simultaneous SAXS and WAXS measurements employing synchrotron radiation. Polymer 2003 44:52095217 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Tjong, SC, Chen, SX, Li, RKY. Crystallization kinetics of compatibilized blends of a liquid crystalline polymer with polypropylene. J Appl Polym Sci 1997 64:707715 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Durmus, A, Yalçınyuva, T. Effects of additives on non-isothermal crystallization kinetics and morphology of isotactic polypropylene. J Polym Res 2009 16:489498 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Avrami, M. Kinetics of phase change II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8 2 212224 .

  • 29. Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer. 1978;19 10 11421144 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Mandelkern, L Crystallization of polymers: kinetics and mechanisms 2004 2 Cambridge University Press Cambridge .

  • 31. Ozawa, T. Kinetics of non-isothermal crystallization. Polymer. 1971;12 3 150158 .

  • 32. Kalkar, AK, Deshpande, VD, Kukarni, MJ. Nonisothermal crystallization kinetics of poly(phenylene sulphide) in composites with a liquid crystalline polymer. J Polym Sci B 2010 48:10701100 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Long, Y, Shanks, RA, Stachurski, ZH. Kinetics of polymer crystallization. Prog Polym Sci 1995 20:651701 .

  • 34. Liu, T, Mo, Z, Wang, S, Zhang, H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 1997 37 3 568575 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Kissinger, HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217221.

    • Search Google Scholar
    • Export Citation
  • 36. Dobreva, A, Gutzow, I. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. J Non-Cryst Solids 1993 162:1325 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Dobreva, A, Gutzow, I. Activity of substrates in the catalyzed nucleation of glass-forming melts. I. Theory. J Non-Cryst Solids 1993 162:112 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Peterson, JD, Vyazovkin, S, Wight, CA. Kinetics of thermal and thermo-oxidative degradation of polystyrene, ethylene and poly(propylene). Macromol Chem Phys 2001 202:775784 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Saikrasun, S, Saengsuwan, S. Thermal decomposition kinetics of in situ reinforcing composite based on polypropylene and liquid crystalline polymer. J Mater Process Technol 2009 209:34903500 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Horowitz, HH, Metzger, G. A new analysis of thermogravimetric traces. Anal Chem 1963 35:14641471 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 1 0 0
Jul 2021 0 0 0
Aug 2021 2 0 0
Sep 2021 1 0 0
Oct 2021 1 0 0
Nov 2021 3 0 0
Dec 2021 0 1 0