A new inorganically template metaphosphate of Co(II) complex has been synthesized and characterized by different measurements such as DSC, FT-IR, C–H–N–O–S, ESR, TG-DTA and X-RD. Differential Scanning Calorimeter (DSC) elucidated negative specific heat of the system and has used to evaluate some thermo dynamical constants like activation energy (Ea), frequency factor (A), enthalpy and entropy of that system. The specific heat capacity of the system is measured both in atmospheric O2 and N2 atmosphere at different heating rates of 278, 283, 293 and 298 K min−1 in room atmosphere and 288 K min−1 in N2 atmosphere.
1. Cao, G, Hong, H, Mallouk, TE. Layered metal phosphates and phosphonates: from crystals to monolayers. Acc Chem Res 1992 25:420–427 .
2. Feng, S, Xu, R. New materials in hydrothermal synthesis. Acc Chem Res 2001 34:239–247 .
3. Clearfield, A, Sharma, CVK, Zhang, B. Crystal engineered supramolecular metal phosphonates: crown ethers and iminodiacetates. Chem Mater 2001 13:3099–3112 .
4. Lohse, DL, Sevov, SC. Co2(O3P–CH2–PO3)·H2O: a novel microporous diphosphonate with an inorganic framework and hydrocarbon-lined hydrophobic channels. Angew Chem Int Ed Engl 1997 36:1619–1621 .
5. Serre, C, Ferey, G. Hydrothermal synthesis and structure determination from powder data of new three-dimensional titanium(IV) diphosphonates Ti(O3P–(CH2)n–PO3) or MIL-25n (n = 2, 3). Inorg Chem 2001 40:5350–5353 .
6. Soghomonian, V, Chen, Q, Haushalter, RC, Zubieta, J. Investigations into the targeted design of solids: hydrothermal synthesis and structures of one-, two-, and three-dimensional phases of the oxovanadium–organodiphosphonate system. Angew Chem Int Ed Engl 1995 34:223–226 .
7. Rodgers JA , Harrison WTA. Ethylenediamine zinc hydrogen phosphite, [H2N(CH2)2NH2]0.5·ZnHPO3, containing two independent, interpenetrating, mixed inorganic/organic networks. Chem Commun 2000; 2385–86.
8. Harrison WTA , Phillips MLF, Nenoff TM. (CN3H6)2·Zn(HPO3)2: an open-framework zincophosphite built up from polyhedral 12-rings. Dalton Trans 2001; 2459–61.
9. Lin, ZE, Zhang, J, Zheng, ST, Yang, GY. Synthesis and characterization of a novel open-framework nickel–zinc phosphite with intersecting three-dimensional 16-ring channels. J Mater Chem 2004 14:1652–1655 .
10. Gordon, LE, Harrison, WTA. Amino acid templating of inorganic networks: synthesis and structure of l-asparagine zinc phosphite, C4N2O3H8·ZnHPO3. Inorg Chem 2004 43:1808–1809 .
11. Fernandez, S, Pizarro, JL, Mesa, JL, Lezama, L, Arriortua, MI, Olazcuaga, R, Rojo, T. Two new three-dimensional vanadium(III) and iron(III) phosphites templated by ethylenediamine: (C2H10N2)0.5[M(HPO3)2]. Ab initio structure determination, spectroscopic, and magnetic properties. Chem mater 2002 14:2300–2307 .
12. Fernandez, S, Pizarro, JL, Mesa, JL, Lezama, L, Arriortua, MI, Rojo, T. Hydrothermal synthesis of a new layered inorganic–organic hybrid cobalt(II) phosphite: (C2H10N2)[Co3(HPO3)4]: crystal structure and spectroscopic and magnetic properties. Int J Inorg Mater 2001 3:331–336 .
13. Fernandez, S, Pizarro, JL, Mesa, JL, Lezama, L, Arriortua, MI, Rojo, T. (C2H10N2)[Cr(HPO3)F3]: the first organically templated fluorochromium(III) phosphite. Angew Chem Int Ed Engl 2002 41:3683–3685 .
14. Fernandez, S, Pizarro, JL, Mesa, JL, Lezama, L, Arriortua, MI, Olazcuaga, R, Rojo, T. A new layered inorganic–organic hybrid manganese(II) phosphite: (C2H10N2)[Mn3(HPO3)4]. Hydrothermal synthesis, crystal structure, and spectroscopic and magnetic properties. Chem Mater 2000 12:2092–2098 .
15. Lynden-Bell, D, Wood, R. The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Mon Not R Astr Soc 1968 138:495–525.
16. Hanggi, P, Ingold, G-L. Quantum Brownian motion and the third law of thermodynamics. Acta Phys Pol B 2006 37:1537–1550.
17. Horhammer, C, Buttner, H. Information and entropy in quantum Brownian motion thermodynamic entropy versus von Neumann entropy. J Stat Phys 2008 133:1161–1174 .
18. Bandyopadhyay M . Quantum thermodynamics of a charged magneto-oscillator coupled to a heat bath. J Stat Mech Theory Exp 2009; doi: .
19. Hanggi P , Ingold G-L, Talkner P. Finite quantum dissipation: the challenge of obtaining specific heat. New J Phys 2008; doi: .
20. Wang, C-Y, Bao, J-D. The third law of quantum thermodynamics in the presence of anomalous couplings. Chin Phys Lett 2008 25:429–432 .
21. Kumar J , Sreeram PA, Dattagupta S. Low-temperature thermodynamics in the context of dissipative diamagnetism. Phys Rev E 2009; doi: .
22. Ingold G-L , Hanggi P, Talkner P. Specific heat anomalies of open quantum systems. 2009; doi: .
23. Wiesniak M , Vedral V, Brukner C. Heat capacity as an indicator of entanglement. Phys Rev B 2008; doi: .
24. Feynman, RP, Vernon, FL. The theory of a general quantum system interacting with a linear dissipative system. Ann Phys (N.Y.) 1963 24:118–173 .
25. Caldena, AO, Leggett, AJ. Quantum tunnelling in a dissipative system. Ann Phys (N.Y.) 1983 149:374–456 .
26. Grabert, H, weiss, U, Talkner, P. Quantum theory of the damped harmonic oscillator. Z Phys B 1984 55:87–94 .
27. Leggett, AJ, Chakravarty, S, Dorsey, AT, Fisher, MPA, Garg, A, Zwerger, W. Dynamics of the dissipative two-state system. Rev Mod Phys 1987 59:1–85 .
28. Grabert, H, Schramm, P, Ingold, G-L. Quantum Brownian motion: the functional integral approach. Phys Rep 1988 168:115–207 .
29. Ford, GW, Lewis, JT, Connell, REO. Quantum oscillator in a blackbody radiation field II. Direct calculation of the energy using the fluctuation-dissipation theorem. Ann Phys (N.Y.) 1988 185:270–283 .
30. Hanke, A, Zwerger, W. Density of states of a damped quantum oscillator. Phys Rev E 1995 52:6875–6878 .
31. Dittrich, T, Hanggi, P, Ingold, G-L, Kramer, B, Schon, G, Zwerger, W Quantum transport and dissipation Chap. 4 Wiley New York 1998.
32. Ford GW , Connell REO. Quantum thermodynamic functions for an oscillator coupled to a heat bath. Phys Rev B 2007; doi: .
33. Ingold G-L . Path integrals and their application to dissipative quantum systems. Lect Notes Phys 611. Berlin: Springer; 2002. p. 1.
34. Zhang, D, Yue, H, Shi, Z, Feng, S. Hydrothermal synthesis and structural characterization of organically templated zincophosphites: [C6H22N4]0.5[Zn2(HPO3)3] and [C3N2H5][Zn1.5(HPO3)2]. Solid State Sci 2005 7:1256–1260 .
35. Calligaris M , Nardin G, Randaccio L, Ripamonti A. Structural aspects of the synthetic oxygen-carrier NN-ethylenebis-(salicylideneiminato)cobalt(II): structure of the addition compound with oxygen containing dimethylformamide. J Chem Soc A 1970; 1069–74.
36. Meyer W , Biedermann K, Gubo M, Hammer L, Heinz K. Superstructure in the termination of CoO(111) surfaces: low-energy electron diffraction and scanning tunneling microscopy. Phys Rev B 2009; doi: .
37. Sharma, R, Sharma, RP, Bala, R, Quiros, M, Salas, JM. A trinuclear cobalt(III) phosphate complex with a novel molecular structure: synthesis and crystal structure of {[Co(en)2]3(PO4)(HPO4)}2(H2PO4)Cl7·6H2O. Inorg Chem Commun 2006 9:782–784 .