View More View Less
  • 1 Dipartimento di Scienze Biologiche ed Ambientali, Università del Sannio, Via Port'Arsa 11, 82100, Benevento, Italy
Restricted access

Abstract

It is shown that it is possible: (a) to derive the 2D scaled particle theory formula of the reversible work of cavity creation using a geometric approach; (b) to obtain the solvation Gibbs energy in a 2D Lennard-Jones fluid; (c) to calculate the solvent contribution to the solvophobic interaction of two Lennard-Jones disks on the basis of geometric arguments. The solvent-excluded surface area associated with cavity creation decreases significantly upon pairwise association, leading to a marked increase in the configurational/translational entropy of solvent disks.

  • 1. Blokzijl, W, Engberts, JBFN 1993 Hydrophobic effects. Opinions and facts. Angew Chem Int Ed Engl 32:15451579 .

  • 2. Chandler, D Interfaces and the driving force of hydrophobic assembly. Nature 2005 437:640647 .

  • 3. Graziano, G Is there a relationship between protein thermal stability and the denaturation heat capacity change?. J Therm Anal Calorim 2008 93:429438 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Taheri-Kafrani, A, Bordbar, AK 2009 Energetics of micellization of sodium n-dodecyl sulfate at physiological conditions using isothermal titration calorimetry. J Therm Anal Calorim 98:567575 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Galan, JJ, Rodriguez, JR 2010 Thermodynamic study of the process of micellization of long chain alkyl pyridinium salts in aqueous solution. J Therm Anal Calorim 101:359364 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Desii, A, Duce, C, Ghezzi, L, Monti, S, Solaro, R, Tinè, MR 2009 Investigation of the self-assembly of hydrophobic self-complementary ionic tetrapeptides. J Therm Anal Calorim 97:791796 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Ben-Naim, A Statistical mechanics of “waterlike” particles in two dimensions: I Physical model and application of the Percus-Yevick equation. J Chem Phys 1971 54:36823695 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Silverstein, KAT, Haymet, ADJ, Dill, KA 1998 A simple model of water and the hydrophobic effect. J Am Chem Soc 120:31663175 .

  • 9. Southall, NT, Dill, KA 2000 The mechanism of hydrophobic solvation depends on solute radius. J Phys Chem B 104:13261331 .

  • 10. Southall, NT, Dill, KA 2002 Potential of mean force between two hydrophobic solutes in water. Biophys Chem 101–102:295307 .

  • 11. Reiss, H, Frisch, HL, Lebowitz, JL 1959 Statistical mechanics of rigid spheres. J Chem Phys 31:369380 .

  • 12. Lee, B Solvent reorganization contribution to the transfer thermodynamics of small nonpolar molecules. Biopolymers 1991 31:9931008 .

  • 13. Graziano, G 2006 Benzene solubility in water: a reassessment. Chem Phys Lett 429:114118 .

  • 14. Ben-Naim, A 1987 Solvation thermodynamics Plenum Press New York.

  • 15. Graziano, G 2008 Water's surface tension and cavity thermodynamics. J Therm Anal Calorim 91:7377 .

  • 16. Graziano, G 2007 A purely geometric derivation of the scaled particle theory formula for the work of cavity creation in a liquid. Chem Phys Lett 440:221223 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Graziano, G 2008 Salting out of methane by sodium chloride: a scaled particle theory study. J Chem Phys 129:084506 .

  • 18. Lee, B, Richards, FM 1971 The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379400 .

  • 19. Reiss, H Scaled particle methods in the statistical thermodynamics of fluids. Adv Chem Phys 1966 9:184 .

  • 20. Boublik, T 1975 Two-dimensional convex particle liquid. Mol Phys 29:421428 .

  • 21. Talbot, J, Tildesley, DJ 1985 The planar dumbbell fluid. J Chem Phys 83:64196424 .

  • 22. Helfand, E, Frisch, HL, Lebowitz, JL 1961 Theory of the two- and one-dimensional rigid sphere fluids. J Chem Phys 34:10371042 .

  • 23. Pierotti, RA 1976 A scaled particle theory of aqueous and nonaqueous solutions. Chem Rev 76:717726 .

  • 24. Graziano, G 2009 Dimerization thermodynamics of large hydrophobic plates: a scaled particle theory study. J Phys Chem B 113:1123211239 .

  • 25. Graziano, G 2009 Role of salts on the strength of pairwise hydrophobic interaction. Chem Phys Lett 483:6771 .

  • 26. Graziano, G 2010 Hydrophobic interaction of two large plates: an analysis of salting-in/salting-out effects. Chem Phys Lett 491:5458 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Graziano, G 2010 On the molecular origin of cold denaturation of globular proteins. Phys Chem Chem Phys 12:1424514252 .

  • 28. Lee, B, Graziano, G 1996 A two-state model of hydrophobic hydration that produces compensating enthalpy and entropy changes. J Am Chem Soc 118:51635168 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)