View More View Less
  • 1 Department of Metallurgy and Materials Engineering, Sakarya University, 54187, Sakarya, Turkey
Restricted access

Abstract

The non-isothermal kinetics of mullite formation from both non-activated and mechanically activated kaolinite have been studied by differential thermal analysis (DTA). Kaolinite was mechanically activated in a planetary mill, while amorphization in the structure was studied by X-ray diffraction analysis. It was established that the mechanical activation especially affected the loss of structural water. The activation energies depending on the conversion for mullite formation have been calculated from the DTA curves by using the non-isothermal method of Coats and Redfern at heating rates of 5, 10, 15, and 20 °C min−1. The mechanical activation and amorphization of the kaolinite brings to the formation of mullite at a lower heating temperature.

  • 1. Souto, PM, Menezes, RR, Kiminami, RHGA. Sintering of commercial mullite powder: effect of MgO dopant. J Mater Process Technol 2009 209:548553 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Behmanesh, N, Heshmati-Manesh, S, Ataie, A. Role of mechanical activation of precursors in solid state processing of nano-structured mullite phase. J Alloys Compd 2008 450:421425 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Melo, JDD, Costa, TCC, Medeiros, AM, Paskocimas, CA. Effects of thermal and chemical treatments on physical properties of kaolinite. Ceram Int 2010 36:3338 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Lee, WE, Souza, GP, McConville, CJ, Tarvornpanich, T, Iqbal, Y. Mullite formation in clays and clay-derived vitreous ceramics. J Eur Ceram Soc 2008 28:465471 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Kim, BM, Cho, YK, Yoon, SY, Stevens, R, Park, HC. Mullite whiskers derived from kaolin. Ceram Int 2009 35:579583 .

  • 6. Ganesh, I, Ferreira, JMF. Influence of raw material type and of the overall chemical composition on phase formation and sintered microstructure of mullite aggregates. Ceram Int 2009 35:20072015 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Chen, CY, Lan, GS, Tuan, WH. Preparation of mullite by the reaction sintering of kaolinite and alumina. J Eur Ceram Soc 2000 20:25192525 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Tamborenea, S, Mazzoni, AD, Aglietti, EF. Mechanochemical activation of minerals on the cordierite synthesis. Thermochim Acta 2004 411:219224 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Mazzoni, AD, Aglietti, EF, Pereira, E. Preparation of spinel powders at low temperature by mechanical activation. Latin Am Res 1991 21:6368.

    • Search Google Scholar
    • Export Citation
  • 10. Sugiyama, K, Filio, JM, Saito, F, Waseda, Y. Structural change of kaolinite and pyrophyllite induced by dry grinding. Miner J 1994 17 1 2841 .

  • 11. Miyazaki, M, Kamitani, M, Nagai, T, Kano, T, Saito, F. Amorphization of kaolinite and media motion in grinding by a double rotating cylinders mill—a comparison with a tumbling ball mill. Adv Powder Technol 2000 11 2 235244 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Frost, RL, Horvath, E, Mako, E, Kristof, J, Redey, A. Slow transformation of mechanically dehydroxylated kaolinite to kaolinite—an aged mechanochemically activated formadide-intercelated kaolinite study. Thermochim Acta 2003 408:103113 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Vizcayno, C, Castello, R, Ranz, I, Calvo, B. Some physico-chemical alterations caused by mechanochemical treatments in kaolinites of different structural order. Thermochim Acta 2005 428:173183 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Ebadzadeh, T. Effect of mechanical activation and microwave heating on synthesis and sintering of nano-structured mullite. J Alloys Compd. 2010;489:125129 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Sanchez-Soto, PJ, Justo, A, Perez-Rodriguez, JL. Grinding effect on kaolinite–pyrophyllite–illite natural mixtures and its influence on mullite formation. J Mater Sci 1994 29:12761283 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Nikaido, M, Yoshizawa, Y, Saito, F. Effects of grinding on formation of mullite in a sintered body and its mechanical and thermal properties. J Chem Eng Jpn 1996 29 3 456463 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Ryu, H. Mixed grinding effect on kaolinite–aluminum trihydroxide mixture and its influence on mullite formation. J Korean Ceram Soc. 1997;34 2 195201.

    • Search Google Scholar
    • Export Citation
  • 18. Ohlberg, SM, Strickler, DW. Determination of percent crystallinity of partly devitrified glass by X-ray diffraction. J Am Ceram Soc 1962 45:170171 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Balaz, P Extractive metallurgy of activated minerals 2000 Elsevier Amsterdam.

  • 20. Balaz, P Mechanochemistry in nanoscience and minerals engineering 2008 Springer Berlin.

  • 21. Vyazovkin, S Isoconversional kinetics 2008 ME Brown PK Gallagher eds. Handbook of thermal analysis and calorimetry Elsevier Amsterdam 503538.

    • Search Google Scholar
    • Export Citation
  • 22. Tromans, D, Meech, JA. Enhanced dissolution of minerals: stored energy, amorphism and mechanical activation. Miner Eng 2001 14 11 13591377 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Tromans, D, Meech, JA. Enhanced dissolution of minerals: microtopography and mechanical activation. Miner Eng 1999 12 6 609625 .

  • 24. Aglietti, EF, Porto Lopez, JM, Pereira, E. Mechanochemical effects in kaolinite grinding. I. Textural and physicochemical aspects. Int J Miner Process 1986 16 1–2 125133 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Aglietti, EF, Porto Lopez, JM, Pereira, E. Mechanochemical effects in kaolinite grinding. II. Structural aspects. Int J Miner Process 1986 16 1–2 135146 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Miller, JG, Oulton, TD. Prototropy in kaolinite during percussive grinding. Clay Clay Miner 1970 18 6 313323 .

  • 27. Chakraborty, AK. DTA study of preheated kaolinite in the mullite formation region. Thermochim Acta. 2003;398:203209 .

  • 28. Sakizci, M, Alver, BE, Yörükoğullari, E. Thermal behavior and immersion heats of selected clays from Turkey. J Therm Anal Calorim 2009 98:429436 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Kamseu, E, Rizzuti, A, Miselli, P, Veronesi, P, Leonelli, C. Use of noncontact dilatometry for the assessment of the sintering kinetics during mullitization of three kaolinitic clays from Cameroon. J Therm Anal Calorim 2009 98:757763 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Chen, YF, Wang, MC, Hon, MH. Phase transformation and growth of mullite in kaolin ceramics. J Eur Ceram Soc 2004 24:23892397 .

  • 31. Chen, YF, Wang, MC, Hon, MH. Transformation kinetics for mullite in kaolin–Al2O3 ceramics. J Mater Res 2003 18 6 13551362 .

  • 32. Traore, K, Gridi-Bennadji, F, Blanchart, P. Significance of kinetic theories on the recrystallization of kaolinite. Thermochim Acta 2006 451:99104 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Tkacova, K Mechanical activation of minerals 1989 Elsevier Amsterdam.

  • 34. Boldyrev, VV, Tkacova, T. Mechanochemistry of solids: past, present, and prospects. J Mater Synth Process 2000 8 3–4 121132 .

  • 35. Steinike, U, Tkacova, K. Mechanochemistry of solids—real structure and reactivity. J Mater Synth Process 2000 8 3–4 197203 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)