View More View Less
  • 1 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Restricted access

Abstract

The single phase NH4NiPO4·6H2O was synthesized by solid-state reaction at room temperature using NiSO4·6H2O and (NH4)3PO4·3H2O as raw materials. XRD analysis showed that NH4NiPO4·6H2O was a compound with orthorhombic structure. The thermal process of NH4NiPO4·6H2O experienced three steps, which involves the dehydration of the five crystal water molecules at first, and then deamination, dehydration of the one crystal water, intramolecular dehydration of the protonated phosphate groups together, at last crystallization of Ni2P2O7. In the DTA curve, the two endothermic peaks and an exothermic peak, respectively, corresponding to the first two steps’ mass loss of NH4NiPO4·6H2O and crystallization of Ni2P2O7. Based on Flynn–Wall–Ozawa equation, and Kissinger equation, the average values of the activation energies associated with the thermal decomposition of NH4NiPO4·6H2O, and crystallization of Ni2P2O7 were determined to be 47.81, 90.18, and 640.09 kJ mol−1, respectively. Dehydration of the five crystal water molecules of NH4NiPO4·6H2O, and deamination, dehydration of the crystal water of NH4NiPO4·H2O, intramolecular dehydration of the protonated phosphate group from NiHPO4 together could be multi-step reaction mechanisms. Besides, the thermodynamic parameters (ΔH, ΔG, and ΔS) of the decomposition reaction of NH4NiPO4·6H2O were determined.

  • 1. Goñi, A, Pizarro, JL, Lezama, LM, Barberis, GE, Arriortua, MI, Rojo, T. Synthesis, crystal structure and spectroscopic properties of the NH4NiPO4·nH2O (n = 1, 6) compounds; magnetic behaviour of the monohydrated phase. J Mater Chem 1996 6:421427 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Li, YF, Cui, W, Zhu, GS, Qiu, SL, Fang, QR, Wang, CL. Hydrothermal synthesis and characterization of Ni3(PO4)2·8H2O with 8-ring and 4-ring network structure. Chem J Chin Univ 2002 23:14801482.

    • Search Google Scholar
    • Export Citation
  • 3. Wu, WW, Fan, YJ, Wu, XH, Liao, S, Li, SS. Preparation via solid-state reaction at room temperature and characterization of layered nanocrystalline NH4MnPO4·H2O. J Phys Chem Solids 2009 70:584587 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Koleva, VG. Metal–water interactions and hydrogen bonding in dittmarite-type compounds M′M′′PO4·H2O(M′ = K+, NH4 +; M′′ = Mn2+, Co2+, Ni2+)—Correlations of IR spectroscopic and structural data. Spectrochim Acta A. 2005;62:11961202 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Carling, SG, Day, P, Visser, D. Crystal and magnetic structures of layer transition metal phosphate hydrates. Inorg Chem 1995 34:39173927 .

  • 6. Flynn, JH, Wall, LA. A quick direct method for the determination of activation energy from thermogravimetric data. Polym Lett 1966 4:323328 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Ozawa, TA. New method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:18811886 .

  • 8. Kissinger, HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:17021706 .

  • 9. Boonchom, B, Puttawong, S. Thermodynamics and kinetics of the dehydration reaction of FePO4·2H2O. Phys B 2010 405:23502355 .

  • 10. Vlaev, L, Nedelchev, N, Gyurova, K, Zagorcheva, M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol 2008 81:253262 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Rajić, N, Ristić, A, Kaučič, V. On the possibility of the preparation open framework manganese phosphate. Zeolites 1996 17:304309 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Boonchom, B, Danvirutai, C, Santi Maensiri, S. Soft solution synthesis, non-isothermal decomposition kinetics and characterization of manganese dihydrogen phosphate dihydrate Mn(H2PO4)2·2H2O and its thermal transformation. Mater Chem Phys 2008 109:404410 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Onoda, H, Sugino, N, Kojima, K, Nariai, H. Mechanochemical effects on synthesis and properties of manganese–neodymium diphosphates. Mater Chem Phys 2003 82:831836 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Šoptrajanov, B, Jovanovski, G, Pejov, L. Very low H–O–H bending frequencies. III. Fourier transform infrared study of cobalt potassium phosphate monohydrate and manganese potassium phosphate monohydrate. J Mol Struct 2002 613:4754 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Wu, XX, Wu, WW, Liao, S, Fan, YJ, Li, SS. Preparation via solid-state reaction at room temperature and characterization of layered nanocrystalline KMnPO4·H2O. J Alloys Compd 2009 479:541544 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Genieva, SD, Vlaev, LT, Atanassov, AN. Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim 2010 99:551561 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Budrugeac, P, Muşat, V, Segal, E. Non-isothermal kinetic study on the decomposition of Zn acetate-based sol-gel precursor. J Therm Anal Calorim 2007 88:699702 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Boonchom, B, Danvirutai, C. Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4·2H2O. J Therm Anal Calorim 2009 98:771777 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Boonchom, B. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dihydrate. J Chem Eng Data. 2008;53:15331538 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Danvirutai, C, Noisong, P, Youngme, S. Some thermodynamic functions and kinetics of thermal decomposition of NH4MnPO4·H2O in nitrogen atmosphere. J Therm Anal Calorim 2010 100:117124 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)