View More View Less
  • 1 Consiglio Nazionale delle Ricerche, Istituto per l’Energetica e le Interfasi (CNR-IENI), UOS di Lecco, Corso Promessi Sposi 29, 23900, Lecco, Italy
Restricted access

Abstract

Shape memory alloy mechanical performance and phase transformation temperatures depend on the composition of the alloy, on the thermo-mechanical history, and on the applied load. For this reason is important to execute a deep investigation of the SMA material before its final use. In this study we investigate the thermo-mechanical behavior of a NiTiCu wire under stress-free condition through the differential scanning calorimetry and the electrical resistance measurements and under load through tensile and hysteresis tests. The phase transformation temperature dependence on the applied load, by means of the Clausius–Clapeyron equation, as well as on the thermal treatment temperature are also studied.

  • 1. Funakubo, H Shape memory alloys 1984 Gordon and Breach Science Publishers London.

  • 2. Otsuka, K, Wayman, CM Shape memory materials 1998 Cambridge University Press Cambridge.

  • 3. Nam, TH, Saburi, T, Nakata, Y, Shimizu, K. Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloy. Mater Trans 1990 31:10501056.

    • Search Google Scholar
    • Export Citation
  • 4. Degeratu, S, Rotaru, P, Manolea, Gh, Manolea, HO, Rotaru, A. Thermal characteristics of Ni–Ti SMA (shape memory alloy) actuators. J Therm Anal Calorim 2009 97:695700 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Torra V , Auguet C, Isalgue A, Lovey FC, Sepulveda A, Soul H. Metastable effects on martensitic transformation in SMA. Part VIII Temperature effects on cycling. J Therm Anal Calorim. 2009. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Carreras, G, Isalgue, A, Torra, V, Lovey, FC, Soul, H. Metastable effects on martensitic transformation in SMA. Part V. Fatigue-life and detailed hysteresis behavior in NiTi and Cu-based alloys. J Therm Anal Calorim 2008 91 2 575579 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Auguet, C, Isalgue, A, Lovey, FC, Pelegrina, JL, Ruiz, S, Torra, V. Metastable effects on martensitic transformation in SMA. Part III. Tentative temperature effects in a NiTi alloy. J Therm Anal Calorim 2007 89 2 537542 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Miller, DA, Lagoudas, DC. Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi. Mater Sci Eng A 2001 308:161175 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Fukuda, T, Kakeshita, T, Kitayama, M, Saburi, T. Effect of aging on martensitic transformation in a shape memory Ti–40.5Ni–10Cu alloy. J Phys IV 1995 5:717722.

    • Search Google Scholar
    • Export Citation
  • 10. Uchil, J. Shape memory alloys—characterization techniques. J Phys. 2002;58:11311139.

  • 11. Duerig, TW, Melton, KN, Stockel, D, Wayman, CM Engineering aspects of shape memory alloys Butterworth-Heinemann London 1990.

  • 12. Auguet, C, Isalgue, A, Torra, V, Lovey, FC, Pelegrina, JL. Metastable effects on martensitic transformation in SMA. PartVII Aging problems in NiTi. J Therm Anal Calorim 2008 92:6371 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Artiaga, R, García, A, García, L, Varela, A, Mier, JL, Naya, S, Gra, M. DMTA study of a nickel-titanium wire. J Therm Anal Calorim 2002 70:199207 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Lo, YC, Wu, SK, Horng, HE. A study of B2-B19-B19′ two-stage martensitic transformation in a Ti50Ni40Cu10 alloy. Acta Metall Mater 1993 41:747759 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Uchil, J, Mohanchandra, KP, Ganesh Kumara, K, Mahesh, KK. Study of critical dependence of stable phases in nitinol on heat treatment using electrical resistivity probe. Mater Sci Eng A 1998 251:5863 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Wu, SK, Lin, HC, Lin, TY. Electrical resistivity of Ni–Ti binary and Ti–Ni-X (X = Fe, Cu) ternary shape memory alloys. Mater Sci Eng A 2006 438–440:536539.

    • Search Google Scholar
    • Export Citation
  • 17. Shaw, JA, Kyriakides, S. Thermomechanical aspects of NiTi. J Mech Phys Solids 1995 43:12431281 .

  • 18. Marony Sousa Farias Nascimento, M CJ de Araújo da Rocha Neto, JS, Nogueira de Lima, AM. Electro-thermomechanical characterization of Ti–Ni shape memory alloy thin wires. Mater Res. 2006;9:1519.

    • Search Google Scholar
    • Export Citation
  • 19. Nam, TH, Saburi, T, Shimizu, K. Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys. Mater Trans 1990 31:956967.

    • Search Google Scholar
    • Export Citation
  • 20. Otsuka, K, Ren, X. Physical metallurgy of Ni–Ti-based shape memory alloys. Prog Mater Sci 2005 50:511678 .

  • 21. Wang, ZG, Zu, XT, Huo, Y. Effect of heating/cooling rate on the transformation temperatures in NiTiCu shape memory alloys. Thermochim Acta 2005 436:153155 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Nurveren, K, Akdoğan, A, Huang, WM. Evolution of transformation characteristics with heating/cooling rate in NiTi shape memory alloys. J Mater Process Technol 2008 196:129134 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Wang, G, Jiang, XX, Nikanpour, D. Measurement of specific heat, latent heat and phase transformation temperatures of shape memory alloys. High Temp High Press 2008 37:91107.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2020 4 0 0
Oct 2020 5 0 0
Nov 2020 2 7 4
Dec 2020 4 0 0
Jan 2021 2 0 0
Feb 2021 3 0 0
Mar 2021 4 0 0