View More View Less
  • 1 Institute of Geonics AS CR, Studentská 1768, 708 00, Ostrava, Czech Republic
  • 2 Technical University of Ostrava, 17. listopadu 15, 708 33, Ostrava, Czech Republic
  • 3 Elvac, Hasičská 53, 700 30, Ostrava, Czech Republic
Restricted access

Abstract

Thermal analysis is a useful tool for determination of the rock‘s thermal behavior. The thermal behavior of the rock is affected by both its composition and structure. This study presents the application of thermogravimetric, differential thermal, and thermomechanical analyses for the characterization of the selected Czech sandstone samples. The detailed study of mineralogical composition was carried out by FTIR spectroscopy, X-ray diffraction, and optical microscopy. Thermal expansion during heating up to 1,000 °C, together with the coefficient of thermal expansion showed almost the same values for all the studied sandstone samples. Nevertheless, the residual thermal expansion varied depending mainly on the composition. In the case of higher content of quartz, the thermal expansion showed higher values. With increase of carbonate, glauconite, or clay mineral volume, the residual thermal expansion decreased. Factors such as grain size or shape of particles did not significantly influence the observed thermal expansion values.

  • 1. Procházka, J. Kvalitativní charakteristika cenomanských pískovců hořického hřbetu (Qualitative characteristics of the Cenomanian sandstones of the Horice bridge). Geochemie. 1986;21:200232 (in Czech with English summary).

    • Search Google Scholar
    • Export Citation
  • 2. Pospíšil, P. Cretaceous sandstones in Moravia and Silesia and their application as building and ornamental stones. Bull Geosci. 2004;79 3 183193.

    • Search Google Scholar
    • Export Citation
  • 3. Rawlley, RK. Mineralogical investigations on an Indian glauconitic sandstone of Madhya Pradesh state. Appl Clay Sci. 1994;8:449465 .

  • 4. Andreozzi, M et al. 1997 Geochemical and mineralogical criteria for the identification of ash layers in the stratigraphic framework of a foredeep; the Early Miocene Mt. Cervarola Sandstones, northern Italy. Chem Geol 137:2339 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Kiminami, K, Fujii, K. The relationship between major element concentration and grain size within sandstones from four turbidite sequences in Japan. Sediment Geol 2007 195:203215 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Khidir A , Catuneanu O. Reservoir characterization of Scollard-age fluvial sandstones, Alberta foredeep. Mar Pet Geol. 2010. doi: .

  • 7. Ip, KH, Stuart, BH, Thomas, PS, Ray, AS. Thermal characterization of the clay binder of heritage Sydney sandstones. J Therm Anal Calorim 2008 92:97100 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Yas, E et al. 2008 Determination of the thermal conductivity from physico-mechanical properties. Bull Eng Geol Environ 67:219225 .

  • 9. Martinec P , Vavro M, Ščučka J, Mašláň M. Properties and durability assessment of glauconitic sandstone: a case study on Zamel sandstone from the Bohemian Cretaceous Basin (Czech Republic). Eng Geol. 2009. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Jeng, FS et al. 2004 Influence of petrographic parameters on geotechnical properties of tertiary sandstones from Taiwan. Eng Geol 73:7191 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Baud, P, Klein, E, Wong, T. Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity. J Struct Geol 2004 26:603624 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Bésuelle, P. Compacting and dilating shear bands in porous rocks: theoretical and experimental conditions. J Geophys Res. 2001;106:13351342 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. El Bied, A, Sulem, J, Martineau, F. Microstructure of shear zones in Fontainebleau sandstone. Int J Rock Mech Min Sci 2002 39:917932 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Said, S et al. 2007 Use of X-ray powder diffraction for quantitative analysis of carbonate rock reservoir samples. Powder Technol 175:115121 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Blanc, F et al. 2007 Estimate of clay minerals amounts from XRD pattern modeling. Phys Chem Earth 32:135144.

  • 16. Chmielová, M, Weiss, Z. Determination of structural disorder degree using an XRD profile fitting procedure. Application to Czech kaolins. Appl Clay Sci 2002 22:6574 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Farmer, VC The infrared spectra of minerals 1974 Mineralogical Society London.

  • 18. Madejová, J, Komadel, P. Baseline studies of the clay minerals society source clays: infrared methods. Clays Clay Miner 2001 49 5 410432 .

  • 19. Krivácsy, Z, Hlavay, J. Determination of quartz in dust samples by diffuse reflection FTIR spectroscopy. J Mol Struct 1993 294:251254 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Oinuma, K, Hayashi, H. Infrared study of mixed-layer clay minerals. Am Mineral 1965 50:12131227.

  • 21. Vaculíková, L, Plevová, E. The identification of clay minerals and micas in sedimentary rocks. Acta Geodyn Geomater 2005 2 2 163171.

    • Search Google Scholar
    • Export Citation
  • 22. Fuente, S, Cuadros, J, Linares, J. Early stages of volcanic tuff alteration in hydrothermal experiments: formation of mixed-layer illite-smectite. Clays Clay Miner 2002 50:578590 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Hatakeyama, T, Liu, Z Handbook of thermal analysis 1998 Wiley New York.

  • 24. Blažek, A Book of thermal analysis 1974 SNTL Prague.

  • 25. Muller, F, Drits, V, Plancon, A, Robert, JL. Structural transformation of 2:1 dioctahedral layer silicates during dehydroxylation–rehydroxylation reactions. Clays Clay Miner 2000 48:572585 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Smykatz-Kloss, W, Klinke, W. The determination of authigenic quartz in porous sedimentary rocks by means of differential scanning calorimetry. J Therm Anal Calorim 1994 42:8597 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Plevová E , Kožušníková A, Vaculíková L, Simha Martynková G. Thermal behavior of selected Czech marble samples. J Therm Anal Calorim. 2010. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Price, DM Principles of thermal analysis and calorimetry 1994 The Royal Society of Chemistry Cambridge.

  • 29. Obara, B, Kožušníková, A. Utilisation of the image analysis method for the detection of the morphological anisotropy of calcite grains in marble. Comput Geosci 2007 11 4 275281 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Leiss, B, Weiss, T. Fabric anisotropy and its influence on physical weathering of different types of Carrara marbles. J Struct Geol 2000 22:17371745 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Luque A , et al. Anisotropic behaviour of White Macael marble used in the Alhambra of Granada (Spain). The role of thermohydric expansion in stone durability. Eng Geol. 2009. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Thompson, GR, Hower, J. The mineralogy of glauconite. Clays Clay Miner 1975 23:289300 .

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 2 0 0
Nov 2020 3 0 0
Dec 2020 1 0 0
Jan 2021 1 0 0
Feb 2021 0 0 0
Mar 2021 1 0 0
Apr 2021 0 0 0