View More View Less
  • 1 Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, San Miguel de Tucumán, Argentina
  • | 2 Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC)-CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
  • | 3 Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, Universidad Nacional de Cuyo, 8400, San Carlos de Bariloche, Argentina
Restricted access

Abstract

The thermal decomposition of Y[Fe(CN)6]·4H2O has been studied in order to investigate the formation of the multi-ferroic oxide YFeO3. The starting material (Y[Fe(CN)6]·4H2O) and the decomposition products were characterized by IR spectroscopy, thermal analysis, X-ray powder diffraction (PXRD), and scanning electron microscopy. Metastable YFeO3 with hexagonal structure, space group P63/mmc, was obtained by thermal decomposition of Y[Fe(CN)6]·4H2O at 600 °C in air. Orthorhombic YFeO3 was obtained by the same method at T ≥ 800 °C in air. The crystal structure of orthorhombic YFeO3 was refined by Rietveld analysis using PXRD data. We found that it was slightly deficient in Y3+, which is in agreement with the small amount of Y2O3 found as impurity in the sample. The formula of the orthorhombic phase is Y0.986FeO3.

  • 1. Abakumov, A, Haderman, J G Van Tendeloo Antipov, E. Chemistry and structure of anion-deficient perovskites with translational interfaces. J Am Ceram Soc. 2008;91 6 18071813 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Yuan, GL, Or, SW, Wang, YP, Liu, JM. Preparation and multi-properties of insulated single phase BiFeO3 ceramics. Solid State Commun 2006 138:7681 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Yun, KY, Noda, M, Okuyama, M. Structural and multiferroic properties of BiFeO3 thin films at room temperature. J Appl Phys 2004 96:33993403 .

  • 4. Moreira dos Santos, A, Parashar, S, Raju, AR, Zhao, YS, Cheetham, AK, Rao, CNR. Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3. Solid State Commun 2002 122:4952.

    • Search Google Scholar
    • Export Citation
  • 5. Yang, CH, Koo, TY, Jeong, YH. Orbital order, magnetism and ferroelectricity of multiferroic BiMnO3. J Magn Magn Mater 2007 3:167170.

    • Search Google Scholar
    • Export Citation
  • 6. Maiti, R, Basu, S, Chakravorty, D. Synthesis of nanocrystalline YFeO3 and its magnetic properties. J Magn Magn Mater 2009 321:32743277 .

  • 7. Yin, LH, Song, WH, Jiao, XL, Wu, WB, Li, LJ, Tang, W, Zhu, XB, Yang, ZR, Dai, JM, Zhang, RL, Sun, YP. A study of the magnetic and dielectric properties of YFe0.5Cr0.5O3. Solid State Commun 2010 150:10741076 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Yamaguchi, O, Takemura, H, Yamashita, M. Formation of yttrium iron oxides derived from alkoxides. J Electrochem Soc 1991 138:14921494 .

  • 9. Wu, L, Yu, J, Zhang, L, Wang, X, Li, S. Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. J Solid State Chem 2004 177:36663674 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Du Buolay, D, Maslem, EN, Streltsov, VA, Ishizawa, N. A synchotron X-ray study of the electron density of YFeO3. Acta Cryst 1995 B51:921929.

    • Search Google Scholar
    • Export Citation
  • 11. Li, J, Singh, UG, Schladt, TD, Stalick, JK, Scott, SL, Seshadri, R. Hexagonal YFe1−xPdxO3−δ: nonperovskite host compound for Pd2+ and their catalytic activity for CO oxidation. Chem Mater 2008 20:65676576 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Inoue, T, Seki, N, Eguchi, K, Arai, H. Low temperature operation of solid electrolyte oxygen sensors using perovskite type oxide electrodes and cathodic reaction kinetics. J Electrochem Soc 1990 137:25232527 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Alcock, CB, Doshi, RC, Shen, Y. Perovskite electrodes for sensors. Solid State Ionics 1992 51:281289 .

  • 14. Martinelli, G, Carotta, MC, Ferroni, M, Sadaoka, Y, Traversa, E. Screen-printed perovskite-type thick films as gas sensors for environmental monitoring. Sens Actuators B 1999 55:99110 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Lu, X, Xie, J, Shu, H, Liu, J, Yin, C, Lin, J. Microwave-assisted synthesis of nanocrystalline YFeO3 and study of its photoactivity. Mater Sci Eng B 2007 138:289292 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Lentmaier, J, Kemmler-Sack, S, Knell, G, Kessler, P, Plies, P. Selective reduction of nitrogen monoxide by catalysts based on composites between solid acid and perovskite in the presence of excess oxygen. Mater Res Bull 1996 31:12691276 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Lentmaier, J, Kemmler-Sack, S. Bifunctional YFeO3-based catalyst used in the selective catalytic reduction on nitrogen monoxide in the presence of excess of oxygen. Mater Res Bull 1998 33:461473 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Shen, H, Xu, J, Wu, A, Zhao, J, Shi, M. Magnetic and thermal properties of perovskite YFeO3 single crystals. Mater Sci Eng B 2009 157:7880 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Dahmani, A, Taibi, M, Nogues, M, Aride, J, Loudghiri, E, Belayachi, A. Magnetic properties of perovskite compounds YCr1−xFexO3 (0.5 ≤ x ≤ 1). Mater Chem Phys 2002 77:912917 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Mathur, S, Veith, M, Rapalaviciute, R, Shen, H, Goya, G, Martins Filho, W, Berquo, T. Molecule derived synthesis of nanocrystaline YFeO3 and investigations on its weak ferromagnetic behavior. Chem Mater 2004 16:19061913 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Samal, SL, Green, W, Lofland, SE, Ramanujachary, KV, Das, D, Ganguli, AK. Study on the solid solution of YMn1−xFexO3: structural, magnetic and dielectric properties. J Solid State Chem 2008 181:6166 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Cristóbal, AA, Botta, PM, Bercoff, PG, Aglietti, EF, Bertorello, HR, Porto López, JM. Mechanochemically assisted synthesis of yttrium-lanthanum orthoferrite: structural and magnetic characterization. J Alloy Compd 2010 495:516519 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Kovachev, S, Kovacheva, D, Aleksovska, S, Svab, E, Krezhov, K. Structure and magnetic properties of multiferroic YCr1−xFexO3 (0 ≤ x ≤ 1). J Optoelectron Adv Mater 2009 11:15491552.

    • Search Google Scholar
    • Export Citation
  • 24. Sugasawa, M, Kikukawa, N, Ishikawa, N, Kayanot, N, Kimurat, T. Synthesis of Y–Fe–O ultrafine particles using inductively coupled plasma. J Aerosol Sci 1998 5:675686 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Traversa, E, Nunziante, P, Sakamoto, M, Sadaoka, Y, Carotta, MC, Martinelli, G. Thermal evolution of the microstructure of nanosized LaFeO3 powders from the thermal decomposition of a heteronuclear complex, La[Fe(CN)6]·5H2O. J Mater Res 1998 13:13351343 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Kondo, N, Itoh, H, Kurihara, M, Sakamoto, M, Aono, H, Sadaoka, Y. New high-yield preparation procedure of Ln[Fe(CN)6]·nH2O (Ln=La, Gd, and Lu) and their thermal decomposition into perovskite-type oxides. J Alloy Compd 2006 408:10261029 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Navarro, MC, Pannunzio-Miner, EV, Pagola, S, Gómez, MI, Carbonio, RE. Structural refinement of Nd[Fe(CN)6]·4H2O and study of NdFeO3 obtained by its oxidative thermal decomposition at very low temperatures. J Solid State Chem 2005 178:847854 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Masuda, Y, Seto, Y, Wang, X, Yukawa, Y, Arii, T. A thermal and structural study on lanthanum hexacyanocobaltate (III) pentahydrate, La[Co(CN)6]·5H2O. J Therm Anal Calorim 2000 60:10331041 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Seto, Y, Umemoto, K, Arii, T, Masuda, Y. Synthesis and thermal decomposition of lanthanide hexacyanochromate (III) complexes, Ln[Cr(CN)6]·nH2O (Ln=La-Lu; n = 3, 4). J Therm Anal Calorim 2004 76:165177 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Itagaki, Y, Mori, M, Hosoya, Y, Aono, H, Sadaoka, Y. O3 and NO2 sensing properties of SmFe1−xCoxO3 perovskite oxides. Sens Actuators B 2007 122:315320 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Medina Córdoba, L, Gómez, MI, Morán, JA PJ de Aymonino Synthesis of the SrFeO2.5 and BaFeO3−x perovskites by thermal decomposition of SrNH4[Fe(CN)6]·3H2O and BaNH4[Fe(CN)6]. J Argent Chem Soc 2008 96:112.

    • Search Google Scholar
    • Export Citation
  • 32. Gil, DM, Carbonio, RE, Gómez, MI. Synthesis of Pb2Fe2O5 by thermal decomposition of Pb2[Fe(CN)6]·4H2O. J Chil Chem Soc 2010 55 2 189192 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Navarro, MC, Lagarrigue, MC JM De Paoli Carbonio, RE, Gómez, MI. A new method of synthesis of BiFeO3 prepared by thermal decomposition of Bi[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2010;102 2 655660 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Farhadi, S, Rashidi, N. Microwave-induced solid-state decomposition of the Bi[Fe(CN)6]·5H2O precursor: a novel route for the rapid and facile synthesis of pure and single phase BiFeO3 nanopowder. J Alloy Compd 2010 503:439444 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Gómez, MI, Morán, JA RE de Carbonio Aymonino, PJ. Synthesis of AFeO2.5+x (0 ≤ x ≤ 0.5; A = Sr, Ca) mixed oxides from the oxidative thermal decomposition of A[Fe(CN)5NO]·4H2O. J Solid State Chem. 1999;142:138145 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Gómez, MI, Lucotti, G, Morán, JA, Aymonino, PJ, Pagola, S, Stephens, P, Carbonio, RE. Ab initio structure solution of BaFeO2.8−δ, a new polytype in the system BaFeO3 (2.5 ≤ y ≤ 3.0) prepared from the oxidative thermal decomposition of Ba[Fe(CN)5NO]·3H2O. J Solid State Chem 2001 160:1724 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Malghe, YS, Dharwadkar, SR. LaCrO3 powder from lanthanum trisoxalatochromate (III) precursor, microwave aided synthesis and thermal characterization. J Therm Anal Calorim 2008 91:915918 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Nakayama, S, Okazaki, M, Aung, YL, Sakamoto, M. Preparation of perovskite-type oxides LaCoO3 from three different methods and their evaluation by homogeneity, sinterability and conductivity. Solid State Ionics 2003 158:133139 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Young, RA The Rietveld method 1995 Oxford Scientifics Publications Oxford.

  • 40. Rodriguez Carbajal, J. Determination of the crystallized fractions of a largely amorphous multiphase material by the Rietveld method. Physica B. 1993;192:5569 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Finger, LW, Cox, DE, Jephcoat, AP. A correction for powder diffraction peak asymmetry due to axial divergence. J Appl Cryst 1994 27:892900 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Rai, D, Danon, J. Mossbauer spectroscopic studies of thermal decomposition of alkali ferricyanides. J Inorg Nucl Chem 1975 37:20392045 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Fanning, JC, Elrod, CD, Franke, BS, Melnik, JD. Prussian blues from the thermal decomposition of H4[Fe(CN)6] and H3[Fe(CN)6]. J Inorg Nucl Chem 1972 34:139148 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Martinez-Garcia, R, Knobel, M, Reguera, E. Thermal-induced change in molecular magnets based on prussian blue analogues. J Phys Chem 2006 110:72967303.

    • Search Google Scholar
    • Export Citation
  • 45. Gallagher, PK, Prescott, B. Further studies of the thermal decomposition of Europium hexacyanoferrrate (III) and ammonium europium hexacyanoferrate (II). Inorg Chem 1970 9 11 25102512 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Nakamoto, K Infrared and Raman spectra of inorganic and coordination compounds 1986 Wiley New York.

  • 47. Avila, M, Reguera, L, Rodriguez Hernandez, J, Balmaceda, J, Reguera, E. Porous framework of T2[Fe(CN)6xH2O with T=Co, Ni, Cu, Zn and H2 storage. J Solid State Chem 2008 181:28992907 .

    • Crossref
    • Search Google Scholar
    • Export Citation

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2022 2 0 0
Feb 2022 2 0 0
Mar 2022 7 1 0
Apr 2022 2 0 0
May 2022 6 0 0
Jun 2022 8 0 0
Jul 2022 0 1 0