View More View Less
  • 1 IFG—Institute for Geoscience, AB Mineralogy & Geodynamics, Applied Mineralogy, Wilhelmstr. 56, 72074, Tübingen, Germany
  • | 2 A. J. Drexel Nanotechnology Institute (DNI), Department of Materials Science & Engineering, Nanomaterials Group, Drexel University, 3141 Chestnut street, Philadelphia, PA, 19104, USA
Restricted access

Abstract

The article shows how additional information can be obtained from coupling a self constructed DTA-system with a commercially available BRUKER D8 DISCOVER GADDS XRD2-microdiffractometer. The dehydration process of gypsum to anhydrite in the temperature range from room temperature up to 723 K is used as an example. Due to the short measurement times of 10 s for each diffraction pattern the three phase transformations from gypsum to anhydrite (anhydrite II) via the hemihydrate bassanite, a water-free bassanite structure (γ-anhydrite, anhydrite III) were resolved in detail by recording the thermal signal and the diffraction pattern simultaneously. To the best of our knowledge, this is the first observation of a completely reversible dehydration/rehydration process of the bassanite/γ-anhydrite-structure around 373 K which is studied by coupled XRD and differential thermal analysis (DTA) measurements.

  • 1. Wefers, K Gleichzeitige Röntgen- und DTA-Untersuchungen fester Stoffe. Berichte der Deutschen Keramischen Gesellschaft 1965 42 2 3560.

    • Search Google Scholar
    • Export Citation
  • 2. Fawcett, TG et al. 1985 The rapid simulaneous measurement of thermal and structural data by a novel DSC/XRD instrument. Adv X-Ray Anal 28:227232.

    • Search Google Scholar
    • Export Citation
  • 3. Fawcett, TG et al. 1989 Combined thermal analyzer and X-ray diffractometer The Dow Chemical Company Midland 26.

  • 4. Kishi, A, Toraya, H 2004 Simultaneous measurements of X-ray diffraction (XRD) and differential scanning calorimetry (DSC) data under controlled humidity condition: instrumentation and application to studies on hydration, dehydration, and rehydration processes of pharmaceutical compounds. Powder Diffr 19 1 3135 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Russell, TP, Koberstein, JT 1985 Simultaneous differential scanning calorimetry and small-angle X-ray-scattering. J Polym Sci B 23 6 11091115.

    • Search Google Scholar
    • Export Citation
  • 6. Bras, W et al. 1995 The combination of thermal-analysis and time-resolved X-ray techniques—a powerful method for materials characterization. J Appl Crystallogr 28:2632 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Kalnin, D et al. 2002 Monitoring fat crystallization in aerated food emulsions by combined DSC and time-resolved synchrotron X-ray diffraction. Food Res Int 35:927934 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Arkadiev, VA et al. 1989 Wide-band X-ray optics with a large aperture. Sov Phys Usp 32:271276 .

  • 9. Kumakhov, MA, Komarov, FF 1990 Multiple reflection from surface X-ray optics. Phys Rep 191 5 289350 .

  • 10. Bjeoumikhov, A, Bjeoumikhova, S, Wedell, R 2005 Capillary optics in X-ray analysis. Part Part Syst Charact 22:384390 .

  • 11. Bjeoumikhov, A, Bjeoumikhova, S, Wedell, R 2009 New developments and applications of X-ray capillary optics. Part Part Syst Charact 26 3 9 .

  • 12. Berthold, C, Bjeoumikhov, A, Brügemann, L 2009 Fast XRD2 microdiffraction with focusing X-ray microlenses. Part Part Syst Charact 26 3 107111 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Chang, LLY, Howie, RA, Zussman, J 1997 Non-silicates: sulphates, carbonates, phosphates, halides. rock forming minerals, vol 5B Geological Society Publishing House Bath 392.

    • Search Google Scholar
    • Export Citation
  • 14. Bezou, C, Mutin, JC, Nonat, A 1990 Crystal-chemistry of plaster constituent phases. Ann Chim Sci Mater 15 6 307314.

  • 15. Morris, RJ 1963 X-ray diffraction identification of the alpha- and beta-forms of calcium sulphate hemihydrate. Nature 198:1299 .

  • 16. Abriel, W, Reisdorf, K 1990 Dehydration reactions of gypsum: a neutron and X-ray diffraction study. J Solid State Chem 85:2330 .

  • 17. Deutsch, Y, Nathan, Y, Sarig, S 1994 Thermogravimetric evaluation of the kinetics of the gypsum hemihydrate soluble anhydrite transitions. J Therm Analy 42 1 159174 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Hudson-Lamb, DL, Strydon, CA, Potgieter, JH 1996 The thermal dehydration of natural gypsum and pure calcium sulphate dihydrate (gypsum). Thermochim Acta 282/283:483492 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Badens, E, Veesler, S, Boistelle, R 1999 Crystallization of gypsum from hemihydrate in presence of additives. J Cryst Growth 199:704709 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Ballirano, P et al. 2001 The monoclinic I2 structure of bassanite, calcium sulphate hemihydrate (CaSO4 x 0.5H2O). Eur J Mineral 13 5 985993 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Follner, S et al. 2003 The setting behaviour of alpha- and beta-CaSO4 x 0.5H2O as a function of crystal structure and morphology. Cryst Res Technol 37 10 10751087 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Prasad, PSR et al. 2005 Direct formation of the gamma-CaSO4 phase in dehydration process of gypsum: In situ FTIR study. Am Min 90 4 672678 .

  • 23. Carbone, M, Ballirano, P, Caminiti, R 2008 Kinetics of gypsum dehydration at reduced pressure: an energy dispersive X-ray diffraction study. Eur J Min 20:621627 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Christensen, AN et al. 2008 Formation and transformation of five different phases in the CaSO4–H2O system: crystal structure of the subhydrate beta-CaSO4 x 0.5H2O and soluble anhydrite CaSO4. Chem Mater 20 6 21242132 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Ballirano, P, Melis, E 2009 Thermal behaviour and kinetics of dehydration in air of bassanite, calcium sulphate hemihydrate (CaSO4 x 0.5H2O) from X-ray powder diffraction. Eur J Mineral 21 5 985993 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Ballirano, P, Melis, E 2009 Thermal behaviour and kinetics of dehydration of gypsum in air from in situ real-time laboratory parallel-beam X-ray powder diffraction. Phys Chem Min 36 7 391402 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Seufert, S et al. 2009 Discrimination of bassanite and anhydrite III dehydrated from gypsum at different temperatures. Zeitschrift Fur Kristallographie 3030:447452.

    • Search Google Scholar
    • Export Citation
  • 28. Lippmann, F 1952 Mineralogische Untersuchungen an einigen niederhessischen Tertiärtonen (Unter besonderer Berücksichtigung der Differntialthermoanalyse). Heidelberger Beiträge zur Mineralogie und Petrographie 3:219252 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Lippmann F . Über eine Apparatur zur Differentialthermoanalyse (DTA). Keramische Zeitschrift. 1959; Nr. 9, 10, 11, p. 475, 524, 570.

    • Search Google Scholar
    • Export Citation

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2022 1 1 0
Feb 2022 1 0 0
Mar 2022 3 1 2
Apr 2022 1 0 0
May 2022 7 0 0
Jun 2022 1 0 0
Jul 2022 0 0 0