View More View Less
  • 1 Building Materials, Lund University, Lund, Sweden
  • 2 Laboratorio de Investigaciones Básicas, Universidad Nacional de Colombia, Bogotá, Colombia
Restricted access

Abstract

Isothermal calorimetry is a powerful technique for the study of kinetics of physical, chemical, and biological processes, for example, of their temperature dependence. A new heat conduction calorimeter that simultaneously makes measurements on four samples at four different temperatures is presented in this article. Results from tests with four biological systems (milk fermentation, carrot juice spoilage, sunflower seed germination, and moss respiration) are shown. In all the cases, the instrument could measure the heat production rate—and thus the process rate—at the different temperatures used.

  • 1. Hansen, LD. Calorimetric measurements of the kinetics of slow reactions. Ind Eng Chem Res. 2000;39:35413549 .

  • 2. Wadsö, L. Operational issues in isothermal calorimetry. Cement Concr Res. 2010;40:11291137 .

  • 3. Dantigny, P, Guilmart, A, Bensoussan, M. Basis of predictive microbiology. Int J Food Microbiol 2005 100:187196 .

  • 4. Alklint, C, Wadsö, L, Sjöholm, I. Accelerated storage and isothermal microcalorimetry as methods of predicting carrot juice shelf-life. J Sci Food Agric 2005 85:281285 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Riva, M, Fessas, D, Schiraldi, A. Isothermal calorimetry approach to evaluate shelf life of foods. Thermochim Acta 2001 370:7381 .

  • 6. Gram, L, Sögaard, H. Microcalorimetry as a rapid method for estimation of bacterial levels in ground meat. J Food Protect 1985 48:341345.

    • Search Google Scholar
    • Export Citation
  • 7. Iversen, E, Wilhelmsen, E, Criddle, RS. Calorimetric examination of cut fresh pineapple metabolism. J Food Sci 1989 54:12461249 .

  • 8. Calvet, E, Prat, H Recent progress in microcalorimetry 1963 Pergamon Oxford.

  • 9. Sigstad, EE, Prado, FE. A microcalorimetric study of Chenopodium quinoa Willd. seed germination. Thermochim Acta 1999 326:159164 .

  • 10. Cabral, MES, Schabes, FI, Sigstad, EE. A calorimetric study of plant–plant and plant–soil interactions of extracts from Ixorhea tschudiana. Thermochim Acta 2010 497:1420 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Troc, M, Skoczowski, A, Baranska, M. The influence of sunflower and mustard leaf extracts on the germination of mustard seeds. J Therm Anal Calorim 2009 95:727730 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Schabes, FI, Sigstad, EE. Optimizing conditions to study seed germination by calorimetry using soybean (Glycine max [L.] Merr.) seeds. Thermochim Acta 2006 450:96101 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Gay, C, Corbineau, F, Côme, D. Effects of temperature and oxygen on seed germination and seedling growth in sunflower (Heliantus annuus L.). Environ Exp Botany 1991 31:193200 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Hansen, LD et al. 2004 Use of calorespirometric ratios, heat per CO2 and heat per O2, to quantify metabolic paths and energetics of growing cells. Thermochim Acta 422:5561 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Proctor, MCF, Pence, VC. Vegetative tissues: Bryophytes, vascular resurrection plants and vegetative propagules 2002 Black, M, Pritchard, HW eds. Desiccation tolerance of vegetative tissues. Drying without dying CABI Publishing Oxon 207237 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Triwitayakorn, K, Wood, AJ. Characterisation of two desiccation-stress related cDNAs TrDr1 and TrDr2 in the resurrection moss Tortula ruralis. South Afr J Bot 2002 68:545549.

    • Search Google Scholar
    • Export Citation
  • 17. Proctor, MCF et al. 2007 Desiccation-tolerance in bryophytes: a review. Bryologist 110:595621 .

  • 18. Thygerson, T, Harris, JM, Smith, BN. Metabolic response to temperature for six populations of winterfat (Eurotia lanata). Thermochim Acta 2002 394:211218 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Hansen, LD et al. 1995 Plant calorimetry. Part 2. Modeling the differences between apples and oranges. Thermochim Acta 250:215232 .

  • 20. Criddle, RS et al. 1988 Effects of temperature and oxygen depletion on metabolic rates of tomato and carrot cell cultures and cuttings measured by calorimetry. Plant Cell Environ 11:695701 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Breidenbach, RW et al. 1997 Heat generation and dissipation in plants: can the alternative oxidative phosphorylation pathway serve a thermoregulatory role in plant tissues other than specialized organs. Plant Physiol 114:11371140 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Criddle, RS, Hansen, LD, Hopkin, MS. Plant distribution and the temperature coefficient of metabolism. Plant Cell Environ 1994 17:233243 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Hemming, DJB et al. 2000 Respiration as measured by scanning calorimetry reflects the temperature dependence of different soybean cultivars. Thermochim Acta 349:131134 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Hansen, LD et al. 2002 Kinetics of plant growth and metabolism. Thermochim Acta 388:415425 .

  • 25. Willson, RJ et al. 1995 Determination of thermodynamic and kinetic parameters from isothermal heat conduction microcalorimetry: applications to long-term-reaction studies. J Phys Chem 99:71087113 .

    • Crossref
    • Search Google Scholar
    • Export Citation