View More View Less
  • 1 Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30–239, Krakow, Poland
  • 2 Plant Protection Institute, Hungarian Academy of Sciences, Herman Otto út 15, 1525, Budapest, Hungary
  • 3 Institute of Biology, Pedagogical University, ul. Podbrzezie 3, 31–054, Krakow, Poland
Restricted access

Abstract

The aim of the study has been to determine the protection effect of brassinosteroid (BR27) in oilseed rape cotyledons against infection by an incompatible wild type of, a hypersensitive response mutant of and saprophytic Pseudomonas bacteria. In this paper, membrane permeability, PSII efficiency and metabolic activity were analysed. The following strains of Pseudomonans were used: P. syringae pv. syringae (Ps), P. syringae pv. syringae hrcC mutant (Pm) and P.fluorescence (Pf). The study was carried out using two cultivars of spring oilseed rape (Brassica napus L.): ‘Licosmos’ and ‘Huzar’. Pre-treatment of cotyledons with BR27 caused about 50–70% increase in ion leakage for both cultivars. However, BR27 significantly decreased ion leakage from cotyledons inoculated with Ps in both cultivars. Infection with Ps and Pf caused disturbances of energy flow in PSII by lowering its efficiency in rape cotyledons. We noted insignificant impact of 24-epibrassinolide on PSII efficiency if compared to absolute control, but generally it had a positive effect in plants infected with bacteria. The values of heat flow in all treatments, except for cotyledons infected with Ps, decreased during 20 h after inoculation. However, the curves of heat flow for Ps-infected cotyledons showed a completely different pattern with at least two peaks. BR27 pre-treated cotyledons infected with Ps had higher heat flow in comparison to Ps infected ones. BR27 treatment did not change specific enthalpy of cotyledon growth (Δgh) for both cultivars if compared with absolute control. However, infection with Ps markedly increased Δgh values by about 200% for both cultivars. We suggested protective action of BR27 in oilseed rape cotyledons after bacterial infection with Pseudomonas.

  • 1. Grove, MD, Spencer, GF, Rohwedder, WK, Mandawa, N, Worley, JF, Warthen, JD, Steffens, GL, Flippen-Anderson, JL, Cook, JC 1979 Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216217 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Bajguz, A, Tretyn, A 2003 The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:10271046 .

  • 3. Wang, ZY, Seto, H, Fujioka, S, Yoshida, S, Chory, J 2001 BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410:380383 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Symons, GM, Ross, JJ, Jager, CE, Reid, JB 2008 Brassinosteroid transport. J Exp Bot 59:1724 .

  • 5. Janeczko, A, Biesaga-Kościelniak, J, Oklešt'ková, J, Filek, M, Dziurka, M, Szarek-Łukaszewska, G, Kościelniak, J 2010 Role of 24-epibrassinolide in wheat production: physiological effects and uptake. J Agron Crop Sci 196:311321.

    • Search Google Scholar
    • Export Citation
  • 6. Janeczko, A, Swaczynová, J 2010 Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biol Plant 54:477482 .

  • 7. Zullo, MAT, Kohout, L 2004 Semisystematic nomenclature of brassinosteroids. Plant Growth Regul 42:1528 .

  • 8. Iwasaki, T, Shibaoka, H 1991 Brassinosteroids act as regulators of tracheary-element differentiation in isolated Zinnia mesophyll cells. Plant Cell Physiol 32:10071014.

    • Search Google Scholar
    • Export Citation
  • 9. Ramraj, VM, Vyas, BN, Godrej, NB, Mistry, KB, Swami, BN, Singh, N 1997 Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. J Agric Sci 128:405413 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Hu, Y, Bao, F, Li, J 2000 Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction. Plant J 24:693701 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Zullo, MAT, Adam, G 2002 Brassinosteroid phytohormones—structure, bioactivity and applications. Braz J Plant Physiol 14:83121 .

  • 12. Fariduddin, Q, Hasan, SA, Ali, B, Hayat, S, Ahmad, A 2008 Effect of modes of application of 28-homobrassinolide on mung bean. Turk J Biol 32:1721.

    • Search Google Scholar
    • Export Citation
  • 13. Bajguz, A, Hayat, S 2009 Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:18 .

  • 14. Volynets, AP, Pschenichnaya, LA, Manzhelesova, NE, Morozik, GV, Khripach, VA 1997 The nature of protective action of 24-epibrassinolide on barley plants. Proc Plant Growth Regul Am Soc 24:133137.

    • Search Google Scholar
    • Export Citation
  • 15. Khripach, VA, Zhabinskii, VN de Groot, AE Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 2000 86:441447 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Krishna, P 2003 Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289297 .

  • 17. Nakashita, H, Yasuda, M, Nitta, T, Asami, T, Fujioka, S, Arai, Y, Sekimata, K, Takasuto, S, Yamaguchi, I, Yoshida, S 2003 Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887898 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Heath, MC Hypersensitive response-related death. Plant Mol Biol 2000 44:321334 .

  • 19. Chou, H-M, Bundock, N, Rolfe, SA, Scholes, JD 2000 Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Mol Plant Pathol 1:99113 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Berger, S, Papadopoulos, M, Schreiber, U, Kaiser, W, Roitsch, T 2004 Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiol Plant 122:419428 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Bonfig, KB, Schreiber, U, Gabler, A, Roitsch, T, Berger, S 2006 Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 225:112 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Janeczko, A, Tóbias, I, Skoczowski, A, Dubert, F, Gullner, G, Barna, B 2007 Bacterial infection and pretreatment with 24-epibrassinolide markedly affect the heat emission and membrane permeability of rape cotyledons. Thermochim Acta 458:8891 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Deng, W-L, Preston, G, Collmer, A, Chang, Ch-J, Huang, H-Ch 1998 Characterization of the hrpC and hrpRS operons of Pseudomonas syringae pathovars syringae, tomato, and glycinea and analysis of the ability of hrpF, hrpG, hrcC, hrpT, and hrpV mutants to elicit the hypersensitive response and disease in plants. J Bacteriol 180:45234531.

    • Search Google Scholar
    • Export Citation
  • 24. Szatmári, Á, Ott, PG, Varga, GJ, Besenyei, E, Czelleng, A, Klement, Z, Bozsó, Z 2006 Characterisation of basal resistance (BR) by expression patterns of newly isolated representative genes in tobacco. Plant Cell Rep 25:728740 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Barna, B, Adám, A, Király, Z 1993 Juvenility and resistance of a superoxide-tolerant plant to diseases and other stresses. Naturwissenschaften 80:420422 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Strasser, RJ, Srivatava, A, Tsimilli-Michael, M 2000 The fluorescence transient as a tool to characterize and screen photosynthetics samples Yunus, M, Pathre, U, Mohaty, P eds. Probing photosynthesis: mechanism, regulation and adaptation Taylor and Francis London 445483.

    • Search Google Scholar
    • Export Citation
  • 27. Janeczko, A, Gullner, G, Skoczowski, A, Dubert, F, Barna, B 2007 Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol Plant 51:355358 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Zhang, Z, Ramirez, J, Reboutier, D, Brault, M, Trouverie, J, Pennarun, AM, Amiar, Z, Biligui, B, Galagovsky, L, Rona, JP 2005 Brassinosteriods regulate plasma membrane anion channels in addition to proton pumps during expansion of Arabidopsis thaliana cells. Plant Cell Physiol 46:14941504 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Dhaubhadel, S, Browning, KS, Gallie, DR, Krishna, P 2002 Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J 29:681691 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Xia, XJ, Wang, YJ, Zhou, YH, Tao, Y, Mao, WH, Shi, K, Asami, T, Chen, Z, Yu, JQ 2009 Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801814 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Ali, B, Hasana, SA, Hayat, S, Hayat, Q, Yadav, S, Fariduddin, Q, Ahmad, A 2008 A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean. Environ Exp Bot 62:153159 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Vlašánková, E, Kohut, L, Klemš, M, Eder, J, Reinöhl, V, Hradilik, J 2009 Evaluation of biological activity of new synthetic brassinolide analogs. Acta Physiol Plant 31:987993 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Pogány, M, Koehl, J, Heiser, I, Elstner, EF, Barna, B 2004 Juvenility of tobacco induced by cytokinin gene introduction decreases susceptibility to Tobacco necrosis virus and confers tolerance to oxidative stress. Physiol Mol Plant Pathol 65:3947 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Barna, B, Smigocki, AC, Baker, JC 2008 Transgenic production of cytokinin suppresses bacterially induced hypersensitive response symptoms and increases antioxidative enzyme levels in Nicotiana spp. Phytopathology 98:12421247 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Shan, L, He, P, Li, J, Heese, A, Peck, SC, Nürnberger, T, Martin, GB, Sheen, J 2008 Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4:1727 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Sasse, JM Physiological actions of brassinosteroids: an update. J Plant Growth Regul 2003 22:276288 .

  • 37. Janeczko, A, Filek, W, Biesaga-Kościelniak, J, Marcińska, L, Janeczko, Z 2003 The influence of animal sex hormones on the induction of flowering in Arabidopsis thaliana: comparison with the effect of 24-epibrassinolide. Plant Cell Tissue Organ Cult 72:147151 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Yu, JQ, Huang, LF, Hu, WH, Zhou, YH, Mao, WH, Ye, SF, Nogues, S 2004 A role of brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:11351143 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Janeczko, A, Kościelniak, J, Pilipowicz, M, Szarek-Łukaszewska, G, Skoczowski, A 2005 Protection of winter rape photosystem II by 24-epibrassinolide under cadmium stress. Photosynthetica 43:293298 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Wilen, RW, Sacco, M, Gusta, LV, Krishna, P 1995 Effects of 24-epibrassinolide on freezing and thermotolerance of bromegrass (Bromus inermis) cell cultures. Physiol Plant 95:195202 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Dhaubhadel, S, Chaudhary, S, Dobinson, KF, Krishna, P 1999 Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol 40:333342 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Mazorra, LM, Núñez, M 2000 Brassinosteroid analogues differentially modify peroxidase activity, superoxide dismutase activity and protein content in tomato seedlings. Cult Tropic 21:2933.

    • Search Google Scholar
    • Export Citation
  • 43. Mazorra, LM, Núñez, M, Hechavarria, M, Coll, F, Sanchez-Blanco, MJ 2002 Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biol Plant 45:593596 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Singh, I, Shono, M 2005 Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul 47:111119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Pociecha, E, Janeczko, A 2008 Oddziaływanie 24-epibrasinolidu i stresu wysokiej temperatury na aktywność enzymów antyoksydacyjnych i rozwój roślin jęczmienia jarego. Zesz Probl Post Nauk Rol 524:8393 (in Polish with English abstract).

    • Search Google Scholar
    • Export Citation
  • 46. Criddle, RS, Fontana, AJ, Rank, DR, Paige, L, Hansen, D, Breidenbach, RW 1991 Simultaneous measurement of metabolic heat rate, CO2 production, and O2 consumption by microcalorimetry. Anal Biochem 194:413417 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Feng, W, Ning, L, Daley, LS, Moreno, Y, Azarenko, A, Criddle, S 1994 Theoretical fitting of energetics of CAM path to calorimetric data. Plant Physiol Biochem 32:591598.

    • Search Google Scholar
    • Export Citation
  • 48. Płażek, A, Rapacz, M 2000 The intensity of respiration and heat emission from seedlings of Festuca pratensis (Hud.) and Hordeum vulgare L. during pathogenesis caused by Bipolaris sorokiniana (Sacc.) Shoem. Acta Physiol Plant 22:2530 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49. Sigstad, EE, Prado, FE 1999 A microcalorimetric study of Chenopodium quinoa Willd seed germination. Thermochim Acta 326:159164 .

  • 50. Stokłosa, A, Janeczko, A, Skoczowski, A, Kieć, J 2006 Isothermal calorimetry as a tool for estimating resistance of wild oat (Avena fatua L.) to aryloxyphenoxypropionate herbicides. Thermochim Acta 441:203206 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51. Schabes, FI, Sigstad, EE 2007 A calorimetric study of the allelopathic effect of cnicin isolated from Centaurea diffusa Lam. on the germination of soybean (Glicine max) and radish (Raphanus sativus). Thermochim Acta 458:8487 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52. Troć, M, Skoczowski, A, Barańska, M 2009 The influence of sunflower and mustard leaf extracts on the germination of mustard seeds. J Therm Anal Calorim 95:727730 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53. Wadsö, I 1997 Trends in isothermal microcalorimetry. Chem Soc Rev 26:7986 .