View More View Less
  • 1 Biology I, Department of Plant Physiology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
  • | 2 Department of Environmental Microbiology, UFZ—Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
Restricted access

Abstract

Isothermal microcalorimetry can be used to investigate the photosynthetic energy conversion of autotrophic organisms. In this study, for the first time a diatom alga was used to compare the calorimetrically measured heat flux with measurements of the photosynthetic performance by oxygen evolution and pulse-amplitude modulated fluorescence. The presented experimental setup proved suitable to compare calorimetric data with those of conventional methods of the determination of photosynthesis rates. Special attention was paid to the contribution of energy dissipation via non-photochemical quenching (NPQ) of chlorophyll fluorescence to the metabolic energy balance. This was achieved by a combination of different light conditions and the use of an inhibitor of NPQ. Although NPQ is an important photoprotective mechanism in diatoms, the inhibition of NPQ resulted in an activation of alternative, energy dissipating pathways for absorbed radiation which completely compensated for the fraction of energy dissipation by NPQ.

  • 1. Wilhelm C , Selmar D. Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J Plant Physiol. 2010;168:7987.

    • Search Google Scholar
    • Export Citation
  • 2. Hendrickson, L, Furbank, R, Chow, W. 2004 A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth Res. 1:7381. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Goss R , Jakob T. Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res. 2010;106:103122.

    • Search Google Scholar
    • Export Citation
  • 4. Beardall, J, Ihnken, S, Quigg, A. 2009 Gross and net primary production: closing the gap between concepts and measurements. Aquat Microb Ecol. 56:113122. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Kroon, BMA, Thoms, S. 2006 From electron to biomass: a mechanistic model to describe phytoplankton photosynthesis and steady-state growth rates. J Phycol. 3:593609. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Jakob, T, Wagner, H, Stehfest, K, Wilhelm, C. 2007 A complete energy balance from photons to new biomass reveals a light- and nutrient-dependent variability in the metabolic costs of carbon assimilation. J Exp Bot. 58:21012112. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Langner, U, Jakob, T, Stehfest, K, Wilhelm, C. 2009 An energy balance from absorbed photons to new biomass for Chlamydomonas reinhardtii and Chlamydomonas acidophila under neutral and extremely acidic growth conditions. Plant Cell Envir. 3:250258.

    • Search Google Scholar
    • Export Citation
  • 8. Wagner, H, Liu, Z, Langner, U, Stehfest, K, Wilhelm, C. 2010 The use of FTIR spectroscopy to assess quantitative changes in the biochemical composition of microalgae. J Biophotonics. 8–9:557566. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Hansen, LD, Hopkin, MS, Criddle, RS. 1997 Plant calorimetry: a window to plant physiology and ecology. Thermochim Acta. 1–2:183197. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Janssen, M, Wijffels, R, von Stockar, U. 2007 Biocalorimetric monitoring of photoautotrophic batch cultures. Thermochim Acta. 1–2:5464. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Mukhanov, VS, Kemp, RB. 2009 Design and experience of using light-emitting diodes (LEDs) as the inbuilt light source for a customised differential photomicrocalorimeter. J Therm Anal Calorim. 3:731736. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Gruszecki, W, Wójtowicz, K, Krupa, Z, Strałka, K. 1994 A direct measurement of thermal energy dissipation in the photosynthetic apparatus during induction of fluorescence. J Photochem Photobiol B. 1:2327. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Mukhanov, V, Kemp, R. 2006 Simultaneous photocalorimetric and oxygen polarographic measurements on Dunaliella maritima cells reveal a thermal discrepancy that could be due to nonphotochemical quenching. Thermochim Acta. 1–2:1119. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Dubinsky, Z, Feitelson, J, Mauzerall, DC. 1998 Listening to phytoplankton: measuring biomass and photosynthesis by photoacoustics. J Phycol. 5:888892. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Schreiber, U, Schliwa, U, Bilger, W. 1986 Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res. 1–2:5162. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Yahyaoui, W, Harnois, J, Carpentier, R. 1998 Demonstration of thermal dissipation of absorbed quanta during energy-dependent quenching of chlorophyll fluorescence in photosynthetic membranes. FEBS Lett. 1–2:5963. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Pinchasov, Y, Porat, R, Zur, B, Dubinsky, Z. 2006 Photoacoustics: a novel tool for the determination of photosynthetic energy storage efficiency in phytoplankton. Hydrobiologia. 1:251256.

    • Search Google Scholar
    • Export Citation
  • 18. Horton, P, Ruban, AV. 1992 Regulation of photosystem II. Photosynth Res. 3:375385. .

  • 19. Goss, R, Richter, M, Wild, A. 1995 Role of [Delta]pH in the mechanism of zeaxanthin-dependent amplification of qE. J Photochem Photobiol B. 2:147152. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Niyogi, K. 1999 Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Phys. 50:333359. .

  • 21. Wagner, B, Goss, R, Richter, M, Wild, A, Holzwarth, AR. 1996 Picosecond time-resolved study on the nature of high-energy-state quenching in isolated pea thylakoids different localization of zeaxanthin dependent and independent quenching mechanisms. J Photochem Photobiol B. 3:339350. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Yamamoto, HY, Kamite, L. 1972 The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochim Biophys Acta. 3:538543.

    • Search Google Scholar
    • Export Citation
  • 23. Lavaud, J, Rousseau, B, van Gorkom, HJ, Etienne, A. 2002 Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol. 3:13981406. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Wagner, H, Jakob, T, Wilhelm, C. 2006 Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol. 1:95108. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Gnaiger, E, Kemp, RB. 1990 Anaerobic metabolism in aerobic mammalian cells: information from the ratio of calorimetric heat flux and respirometric oxygen flux. Biochim Biophys Acta. 3:328332.

    • Search Google Scholar
    • Export Citation
  • 26. Guillard, RRL, Lorenzen, CJ. 1972 Yellow-green algae with chlorophyllide c. J Phycol. 1:1014.

  • 27. Hansen, LD, Macfarlane, C, McKinnon, N, Smith, BN, Criddle, RS. 2004 Use of calorespirometric ratios, heat per CO2 and heat per O2, to quantify metabolic paths and energetics of growing cells. Thermochim Acta. 1–2:5561. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. van Kooten, O, Snel, JFH. 1990 The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res. 3:147150. .

  • 29. Schreiber, U, Bilger, W, Neubauer, C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis Schulze, ED, Caldwell, MM, eds. Ecophysiology of photosynthesis. Berlin: Springer; 1994 4970.

    • Search Google Scholar
    • Export Citation
  • 30. Olsen, J, Davis, L. 1976 The oxidation of dithiothreitol by peroxidases and oxygen. Biochim Biophys Acta. 2:324329.

  • 31. Winterbourn, CC, Peskin, AV, Parsons-Mair, HN. 2002 Thiol oxidase activity of copper, zinc superoxide dismutase. J Biol Chem. 3:19061911. .

  • 32. Prezelin, BB. 1981 Light reactions in photosynthesis. Can Bull Fish Aquat Sci. 210:143.

  • 33. Maxwell, K, Johnson, GN. 2000 Chlorophyll fluorescence—a practical guide. J Exp Bot. 345:659668. .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 3 0 0
Mar 2021 1 0 0
Apr 2021 2 0 0
May 2021 5 0 0
Jun 2021 1 0 0
Jul 2021 2 0 0
Aug 2021 0 0 0