Authors:
Z. Aigner Department of Pharmaceutical Technology, University of Szeged, Eötvös u. 6, Szeged H-6720, Hungary

Search for other papers by Z. Aigner in
Current site
Google Scholar
PubMed
Close
,
R. Heinrich Department of Pharmaceutical Technology, University of Medicine and Pharmacy of Târgu Mures, Marinescu Str. 38, 540139, Targu-Mures, Romania

Search for other papers by R. Heinrich in
Current site
Google Scholar
PubMed
Close
,
E. Sipos Department of Pharmaceutical Technology, University of Medicine and Pharmacy of Târgu Mures, Marinescu Str. 38, 540139, Targu-Mures, Romania

Search for other papers by E. Sipos in
Current site
Google Scholar
PubMed
Close
,
G. Farkas Department of Pharmaceutical Technology, University of Szeged, Eötvös u. 6, Szeged H-6720, Hungary

Search for other papers by G. Farkas in
Current site
Google Scholar
PubMed
Close
,
A. Ciurba Department of Pharmaceutical Technology, University of Medicine and Pharmacy of Târgu Mures, Marinescu Str. 38, 540139, Targu-Mures, Romania

Search for other papers by A. Ciurba in
Current site
Google Scholar
PubMed
Close
,
O. Berkesi Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vértanúk tere 1, Szeged H-6720, Hungary

Search for other papers by O. Berkesi in
Current site
Google Scholar
PubMed
Close
, and
P. Szabó-Révész Department of Pharmaceutical Technology, University of Szeged, Eötvös u. 6, Szeged H-6720, Hungary

Search for other papers by P. Szabó-Révész in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The compatibility of aceclofenac with various tableting excipients was investigated by means of differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The excipients applied in the direct pressing retard tablets were Carbopol 940, hydroxypropyl-methyl-cellulose, microcrystalline cellulose, Aerosil 200 and magnesium stearate. The ingredients alone and their 1:1 (w/w) binary mixtures were investigated before and after accelerated storage. An interaction was observed only between aceclofenac and magnesium stearate. The DSC and FT-IR examinations indicated formation of the magnesium salt of aceclofenac. For the other mixtures, there was no incompatibility between the components.

  • 1. Thumma, S, Repka, MA. Compatibility studies of promethazine hydrochloride with tablet excipients by means of thermal and non-thermal methods. Pharmazie 2009 64:183189.

    • Search Google Scholar
    • Export Citation
  • 2. Crowley, P, Martini, L. Drug-excipient interactions. Pharm Technol Eur 2001 13:2634.

  • 3. McDaid, FM, Barker, SA, Fitzpatrick, S, Petts, CR, Craig, DQM. Further investigations into the use of high sensitivity differential scanning calorimetry as a means of predicting drug–excipient interactions. Int J Pharm 2003 252:235240 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Kiss, D, Zelkó, R, Novák, Cs, Éhen, Zs. Application of DSC and NIRs to study the compatibility of metronidazole with different pharmaceutical excipients. J Therm Anal Calorim 2006 84:447451 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Mura, P, Manderioli, A, Bramanti, G, Furlanetto, S, Pinzauti, S. Utilization of differential scanning calorimetry as a screening technique to determine the compatibility of ketoprofen with excipients. Int J Pharm 1995 119:7179 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Rezende, RLO, Santoro, MIRM, Matos, JR. Stability and compatibility study on enalapril maleate using thermoanalytical techniques. J Therm Anal Calorim 2008 93:881886 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Araújo, AAS, Storpirtis, S, Mercuri, LP, Carvalho, FMS, Filho, MS, Matos, JR. Thermal analysis of the antiretroviral zidovudine (AZT) and evaluation of the compatibility with excipients used in solid dosage forms. Int J Pharm 2003 260:303314 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Zaccaron, CM, Oliveira, RVB, Guiotoku, M, Pires, ATN, Soldi, V. Blends of hydroxypropyl methylcellulose and poly(1-vinylpyrrolidone-co-vinyl acetate): miscibility and thermal satibility. Polym Degrad Stab 2005 90:2127 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Schmitt, EA, Peck, K, Sun, Y, Geoffroy, J-M. Rapid, practical and predictive excipient compatibility screening using isothermal microcalorimetry. Thermochim Acta 2001 380:175183 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Verma, RK, Garg, S. Selection of excipients for extended release formulations of glipizide through drug–excipient compatibility testing. J Pharm Biomed Anal 2005 38:633644 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Hasan, NY, Abdel-Elkawy, M, Elzeany, BE, Wagieh, NE. Stability indicating methods for the determination of aceclofenac. Il Farmaco 2003 48:9199 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Chopra, D, Sinha, VR, Singh, M. Thermal and isothermal methods in development of sustained release dosage forms of ketorolac tromethamine. J Chem 2008 5:316322.

    • Search Google Scholar
    • Export Citation
  • 13. Mutalik, S, Naha, A, Usha, AN, Ranjith, AK, Musmade, P, Manoj, K, Anju, P, Prasanna, S. Preparation, in vitro, preclinical and clinical evaluations of once daily sustained release tablets of aceclofenac. Arch Pharm Res 2007 30:222234 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Parfitt, K. Analgesics, anti-inflammatory and antipyretics 1999 Reynolds, JEF eds. Martindale the complete drug reference 32 Pharmaceutical Press London 212.

    • Search Google Scholar
    • Export Citation
  • 15. Burrull, M, Madridejos, R, Gregori, A, Busquets, E. Non-steroid anti-inflammatory agents and gastrointestinal protection: adequate prescription in primary care?. Aten Primaria 1996 18:507510.

    • Search Google Scholar
    • Export Citation
  • 16. Mutalik, S, Anju, P, Manoj, K, Usha, AN. Enhancement of dissolution rate and bioavailability of aceclofenac: a chitosan-based solvent change approach. Int J Pharm 2008 351:279290 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Tran, TT-D, Tran, PH-L, Lee, B-J. Dissolution–modulating mechanism of alkalizers and polymers in a nanoemulsifying solid dispersion containing ionizable and poorly water-soluble drug. Eur J Pharm Biopharm 2009 72:8390 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Patel, AR, Joshi, VY. Evaluation of SLS: APG mixed surfactant systems as carrier for solid dispersion. AAPS Pharmscitech 2008 9:583590 .

  • 19. Vadher, AH, Parikh, JR, Parikh, RH, Solanki, AB. Preparation and characterization of co-grinded mixtures of aceclofenac and Neusilin US2 for dissolution enhancement of aceclofenac. AAPS Pharmscitech 2009 10:606614 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Ceschel, GC, Badiello, R, Ronchi, C, Maffei, P. Degradation of components in drug formulations: a comparison between HPLC and DSC methods. J Pharm Biomed Anal 2003 32:10671072 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 41 8 5
Jan 2024 35 4 0
Feb 2024 30 0 0
Mar 2024 18 1 2
Apr 2024 34 0 0
May 2024 5 0 0
Jun 2024 0 0 0