View More View Less
  • 1 Apis Flora Industrial e Comercial LTDA, Rua Triunfo, Ribeirão Prêto-SP 945 CEP 14020–670, Brazil
  • | 2 Instituto de Química UNESP/Araraquara—UNESP, Araraquara-SP, Brazil, hernane.barud@gmail.com
Restricted access

Abstract

Quercetin is a flavonoid very well studied and has already entered clinical trials emerging as prospective anticancer drug candidate. In addition, quercetin has being reported to its free-radical scavenging activity and suggests potential uses for the prevention and treatment of pathologies as atherosclerosis, chronic inflammation, and others. However, quercetin is sparingly soluble in water, which may be responsible for its limited absorption upon oral administration. The solid dispersion of quercetin with polyvinylpyrrolidone Kollidon® 25 (PVP K25) suggests an interesting way to increase quercetin solubility, antioxidant activity, and consequently bioavailability. Then, the purpose of this study was to prepare solid dispersions of quercetin with PVP K25 and evaluate their thermal characterization, antioxidant activity and quercetin improvement solubility. For this purpose, quercetin-PVP K25 solutions were dried and quercetin-PVP K25 solids were obtained. The formation of quercetin-PVP K25 solid dispersion was evaluated by solubility studies, powder X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetry (TG), and antioxidant activity. It was observed that PVP K25 was able to provide quercetin clear aqueous solutions and that quercetin solubility was increased in a PVP K25 concentration dependent manner, improving solubility even 436-fold the pure quercetin. The results obtained with XRD, FT-IR, DSC, and TG demonstrated possible quercetin-PVP K25 solid dispersion formation. Besides, the antioxidant activity of the quercetin-PVP K25 solid dispersions dissolved in aqueous solution and pure quercetin dissolved in methanol showed IC50 value of 0.61 ± 0.03 and 1.00 ± 0.02 μg/mL, respectively, demonstrating that the solid dispersions presented a significant increase in antioxidant activity (P < 0.05). Putting results together, it was possible to conclude there was the formation of quercetin-PVP K25 solid dispersion.

  • 1. Marquelle-Oliveira, F, Fonseca, YM, Georgetti, SR, Vicentini, FTMC, Bronzati, V, Fonseca, MJV. Evaluation of the antioxidant activity as an additional parameter to attain the functional quality of natural extracts. Latin Am J Pharm 2008 27:325332.

    • Search Google Scholar
    • Export Citation
  • 2. Singh K , Marangoni DG. Microcalorimetric determination of effect of the antioxidant (Quercetin) on polymer/surfactant interactions. J Therm Anal Calorim. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Kanaze, FI, Kokkalou, E, Niopas, I, Georgarakis, M, Stergiou, A, Bikiaris, D. Thermal analysis study of flavonoid solid dispersions having enhanced solubility. J Therm Anal Calorim 2006 83:283290 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Rice-Evans, CA, Miller, NJ, Paganga, G. Structure antioxidant activity relationship of flavonoids and phenolic acids. Free Radic Biol Med 1996 20:933956 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. López-Revuelta, A, Sánchez-Gallego, JI, Hernández-Hernández, A, Sánchez-Yagüe, J, Llanillo, M. Membrane cholesterol contents influence the protective effects of quercetin and rutin in erythrocytes damaged by oxidative stress. Chem Biol Interact 2006 161:7991 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Cook, NC, Samman, S. Flavonoids, chemistry, metabolism, cardioprotective effects and dietary sources. J Nutr Biochem 1996 7:6676 .

  • 7. Bors, W, Heller, W, Michel, C, Saran, M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 1990 186:343355 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Lu, J, Zheng, Y, Luo, L, Wu, D, Sun, D, Feng, Y. Quercetin reverses d-galactose induced neurotoxicity in mouse brain. Behav Brain Res 2006 171:251260 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Budavari, S, O’Neil, MJ, Smith, A, Heckelman, PE, Kinneary, JF The Merck index: an encyclopedia of chemicals, drugs, and biologicals 1996 12 Merck & Co Whitehouse Station.

    • Search Google Scholar
    • Export Citation
  • 10. Indap, MA, Bhosle, SC, Tayade, PT, Vavia, PR. Evaluation of toxicity and antitumour effects of a hydroxypropyl β-cyclodextrin inclusion complex of quercetin. Indian J Pharm Sci 2002 64:349353.

    • Search Google Scholar
    • Export Citation
  • 11. Hirpara, KV, Aggarwal, P, Mukherjee, AJ, Joshi N Burman, AC. Quercetin and its derivatives: synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bioavailability. Med Chem 2009 9:138161.

    • Search Google Scholar
    • Export Citation
  • 12. Yuan, ZP, Chen, LJ, Fan, LY, Tang, MH, Yang, GL, Yang, HS, Du, XB, Wang, GQ, Yao, WX, Zhao, QM, Ye, B, Wang, R, Diao, P, Zhang, W, Wu, HB, Zhao, X, Wei, YQ. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin Cancer Res 2006 12:31933199 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Croft, KD. The chemistry and biological effects of flavonoids and phenolic acids. Ann NY Acad Sci. 1998;854:435442 .

  • 14. Jullian, C, Moyano, L, Yañez, C, Azar-Olea, C. Complexation of quercetin with three kinds of cyclodextrins: an antioxidant study. Spectrochimica Acta Part A Mol Biomol Spectrosc 2007 67:230234 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Gugler, R, Leschik, M, Dengler, HJ. Disposition of quercetin in man after single oral and intravenous doses. Eur J Clin Pharm 1975 9:223234 .

  • 16. Wu, TH, Yen, FL, Lin, LT, Tsai, TR, Lin, CC, Cham, TM. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm 2008 346:160168 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Papageorgiou, GZ, Docoslis, A, Georgarakis, M, Bikiaris, D. The effect of the physical state on the drug dissolution rate: miscibility studies of nimodipine with PVP. J Therm Anal Calorim 2009 95:903915 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Karavas, E, Georgarakis, E, Bikiaris, D. Adjusting drug release by using miscible polymer blends as effective drug carries. J Therm Anal Calorim 2006 84:125133 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Friedrich, H, Fussnegger, B, Kolter, K, Bodmeier, R. Dissolution rate improvement of poorly water-soluble drugs obtained by adsorbing solutions of drugs in hydrophilic solvents onto high surface area carriers. Eur J Pharm Biopharm 2006 62:171177 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Ammar, HO, Ghorab, M, El-Nahhas, SA, Makram, TS. Improvement of the biological performance of oral anticoagulant drugs.1. Warfarin. Pharmazie 1997 52:627631.

    • Search Google Scholar
    • Export Citation
  • 21. El-Arini, SK, Leuenberger, H. Dissolution properties of praziquantel-PVP systems. Pharm Acta Helvetiae 1998 73:8994 .

  • 22. Dowd, LE. Spectrophotometric determination of quercetin. Anal Chem. 1959;31:11841187 .

  • 23. Jay, M, Gonnet, JF, Wollenwebwer, E, Voirin, B. Sur lánalyse qualitative des aglycones flavoniques dans une optique chimiotaxinomique. Phytochem 1975 14:16051612 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Brand-Williams, W, Cuvelier, ME, Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 1995 28:2530 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Zhu, J, Yang, ZG, Chen, XM, Sun, JB, Awuti, G, Zhang, X, Zhang, Q. Preparation and physicochemical characterization of solid dispersion of quercetin and polyvinylpyrrolidone. J Chin Pham Sci 2007 16:5156.

    • Search Google Scholar
    • Export Citation
  • 26. Pralhad, T, Rajendrakumar, K. Study of freeze-dried quercetin–cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J Pharm Biomed Anal 2004 34:333339 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Zheng, Y, Chow, AHL. Production and characterization of a spray-dried hydroxypropyl-beta-cyclodextrin quercetin complex. Drug Dev Ind Pharm 2009 35:727734 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Marin, MT, Margarit, MV, Salcedo, GE. Characterization and solubility study of solid dispersions of flunarizine and polyvinylpyrrolidone. II Farmaco 2002 57:723727 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Rosenkrantz, H, Skogstron, P. Characteristic infrared absorption bands of steroids with reduced ring A. I. tetrahydro compounds. J Am Chem Soc 1955 77:22372241 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Costa, EM, Filho, JMB, Nascimento, TG, Macêdo, RO. Thermal characterization of the quercetin and rutin flavonoids. Thermochimica Acta 2002 392:7984 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Razzak, MT, Zainuddin, E, Dewi, SP, Lely, H, Taty, E Sukirno The characterization of dressing component materials and radiation formation of PVA–PVP hydrogel. Radiat Phys Chem 1999 55:153165 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 1 0 0
Jul 2021 5 0 0
Aug 2021 5 0 0
Sep 2021 6 0 0
Oct 2021 6 0 0
Nov 2021 7 0 0
Dec 2021 0 0 0