Authors:
Alberto Albis Departamento de Química, Universidad Nacional de Colombia, Cra 45 26–85 Oficina 409, Bogotá, Colombia
Departamento de Ingeniería Química, Universidad del Atlántico, Barranquilla, Colombia

Search for other papers by Alberto Albis in
Current site
Google Scholar
PubMed
Close
,
José Manuel Lozano Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
Fundación Instituto de Inmunología de Colombia FIDIC, Bogotá, Colombia

Search for other papers by José Manuel Lozano in
Current site
Google Scholar
PubMed
Close
,
Javier Sancho Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias Universidad de Zaragoza, Zaragoza, Spain

Search for other papers by Javier Sancho in
Current site
Google Scholar
PubMed
Close
, and
Carmen M. Romero Departamento de Química, Universidad Nacional de Colombia, Cra 45 26–85 Oficina 409, Bogotá, Colombia

Search for other papers by Carmen M. Romero in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Thermal stability of bovine α-lactalbumin in the presence of three different calcium concentrations in aqueous solutions of several concentrations of erythritol, xylitol, sorbitol, and inositol at pH 6.5 was evaluated by UV absorbance, fluorescence spectroscopy, and circular dichroism spectroscopy. At the selected conditions, the thermal denaturation process is reversible and is well described by a two-state model. Results show a higher stability for the holo form of the protein in the presence of calcium, followed by the holo- and the apo-lactalbumin, respectively. The stabilizing effect of the polyols increases with polyol concentration and it is higher for the apo-lactalbumin than holo-lactalbumin and is very small for the protein in the presence of a calcium excess.

  • 1. Permyakov, EA, Berliner, LJ. α-Lactalbumin: structure and function. FEBS Lett 2000 473:269274 .

  • 2. Chrysina, ED, Brew, K, Acharya, KR. Crystal structures of apo- and holo-bovine α-lactalbumin at 2.2-Å resolution reveal an effect of calcium on inter-lobe interactions. J Biol Chem 2000 257:3702137029 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Kronman, MJ, Andreotti, RE. Inter- and intramolecular interactions of α-lactalbumin. I. The apparent heterogeneity at acid pH. Biochemistry 1964 3:11451151 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Apenten, RKO. A three-state heat-denaturation of bovine α-lactalbumin. Food Chem. 1995;52:131133 .

  • 5. Zhong, H, Gilmanshin, R, Callender, R. An FTIR study of the complex melting behavior of α-lactalbumin. J Phys Chem B 1999 103:39473953 .

  • 6. Griko, YV, Freire, E, Privalov, PL. Energetic of the α-lactalbumin states: a calorimetric and statistical thermodynamic study. Biochemistry 1994 33:18891899 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Apenten, RKO. Thermodynamic parameters for 3-state thermal denaturation of human and bovine α-lactalbumin. Thermochim Acta. 1995;262:112 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Veprintsev, DB, Permyakov, SE, Permyakov, EA, Rogov, VV, Cawthern, KM, Berliner, LJ. Cooperative thermal transitions of bovine an human apo-α-lactalbumins: evidence for a new intermediate state. FEBS Lett 1997 412:625628 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Hendrix, TM, Griko, Y, Privalov, P. Energetic of structural domains in α-lactalbumin. Protein Sci 1996 5:923931 .

  • 10. Sekhar, G, Prakash, V. Interaction of selected cosolvents with bovine α-lactalbumin. Int J Biol Macromol 2008 42:348 .

  • 11. O’Connor, TF, Debenedetti, PG, Carbeck, JD. Stability of proteins in the presence of carbohydrates; experiments and modeling using scaled particle theory. Biophys Chem 2007 127:5163 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. France, RM, Grossman, SH. Acrylamide quenching of apo- and holo-α-lactalbumin in guanidine hydrochloride. Biochem Biophys Res Commun 2000 269:709712 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Banerjee T , Kishore N. Insights into the energetics and mechanism underlying the interaction of tetraethylammonium bromide with proteins. J Chem Therm. 2007 (in press).

    • Search Google Scholar
    • Export Citation
  • 14. Cawthern, KM, Narayan, M, Chaudhuri, D, Permyakov, EA, Berliner, LJ. Interactions of α-lactalbumin with fatty acids and spin label analogs. J Biol Chem 1997 272:3081230816 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Rishi, V, Anjum, F, Ahmad, F, Pfeil, W. Role of non-compatible osmolytes in the stabilization of proteins during heat stress. Biochem J 1998 329:137143.

    • Search Google Scholar
    • Export Citation
  • 16. Davis-Searles, PR, Saunders, AJ, Erie, DA, Winzor, DJ, Pielak, GJ. Interpreting the effects of small uncharged solutes on protein folding equilibria. Annu Rev Biophys Biomol Struct 2001 30:271 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Kaushik, J, Bhat, R. Thermal stability of proteins in aqueous polyol solutions: role of the surface tension of water in the stabilizing effect of polyols. J Phys Chem B 1998 102:70587066 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Xie, G, Timasheff, SN. The thermodynamic mechanism of protein stabilization by trehalose. Biophys Chem 1997 64:2543 .

  • 19. Haque, I, Singh, R, Moosavi-Movahedi, AA, Ahmed, F. Effect of polyol osmolytes on ΔGD, the Gibbs energy of stabilisation of proteins at different pH values. Biophys Chem 2005 117:112 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Wetlaufer, DB. Osmometry and general characterization of α-lactalbumin. CR Trav Lab Carlsberg. 1961;32:125138.

  • 21. Cooper A . Thermodynamics of protein folding and stability. In: Allen G, editor. Protein: a comprehensive treatise, vol. 2. Stamford: JAI Press Inc.; 1999. p. 21770.

    • Search Google Scholar
    • Export Citation
  • 22. Romero, CM, Albis, A, Lozano, JM, Sancho, J. Thermodynamic study of the influence of polyols and glucose on the thermal stability of holo-bovine α-lactalbumin. J Therm Anal Calorim 2009 98:165171 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Albis, A, Lozano, JM, Romero, CM. Estabilización de la holo-α-lactoalbúmina en presencia de polioles. Rev Colomb Quím 2009 38:209219.

    • Search Google Scholar
    • Export Citation
  • 24. Hendrix, T, Griko, YV, Privalov, PL. A calorimetric study of the influence of calcium on the stability of bovine α-lactalbumin. Biophys Chem 2000 84:2734 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Xie, G, Timasheff, SN. Mechanism of the stabilization of ribonuclease A by sorbitol: preferential hydration is greater for the denatured than for the native protein. Protein Sci 1997 6:211221 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Wimmer, R, Olsson, M, Neves Petersen, MT, Hatti-Kaul, R, Petersen, SB, Müller, N. Towards a molecular level understanding of protein stabilization: the interaction between lysozyme and sorbitol. J Biotechnol 1997 55:85100 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Tiwari, A, Bhat, R. Stabilization of yeast hexokinase A by polyol osmolytes: Correlation with the physicochemical properties of aqueous solutions. Biophys Chem 2006 124:9099 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Santoro, MM, Liu, Y, Khan, SMA, Hou, L-X, Bolen, DW. Increased thermal stability of proteins in the presence os naturally occurring osmolytes. Biochemistry 1992 31:52785283 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Parsegian, VA, Rand, RP, Rau, DC. Osmotic stress, crowding, preferential hydration, and binding: a comparación of perspectives. PNAS 2000 97:39873992 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Timasheff, SN. Thermodynamic binding and site occupancy in the light of the Schellman exchange concept. Biophys Chem. 2002;101–102:99111 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2024 1 0 0
Apr 2024 31 0 0
May 2024 0 0 0
Jun 2024 8 0 0
Jul 2024 5 0 0
Aug 2024 22 0 0
Sep 2024 2 0 0